# Leaded Fixed Linear Resistors

1998/1999 Data Handbook PA08b





**PHILIPS** 

Let's make things better.

Welcome to the European edition of Philips Components' Leaded Resistor Data Handbook. The wide range of our resistor programme covers all resistor technologies and reflects our strong commitment to this important area of the passive-component market.

#### **QUALITY ASSURED**

Although the initial cost of resistors is generally low, the large numbers used in a typical circuit means that their reliability is of ultimate importance. Component reliability is, therefore, our prime consideration and quality our main commitment. A commitment which extends into all aspects of our business from the design and manufacturing process, to the supply and service we offer to customers. Our resistor facility in Roermond - The Netherlands is an ISO 9001 certified supplier which is supported by means of statistical process control (SPC) procedures at all key points in the production process.

#### **CUSTOMER SERVICE**

Philips Components has a network of sales organizations that communicate directly with the regional Business Centre for fixed resistors. Short communication lines mean fast response to all customer enquiries and rapid problem solving.

#### **ADVANCED RESISTOR TECHNOLOGIES**

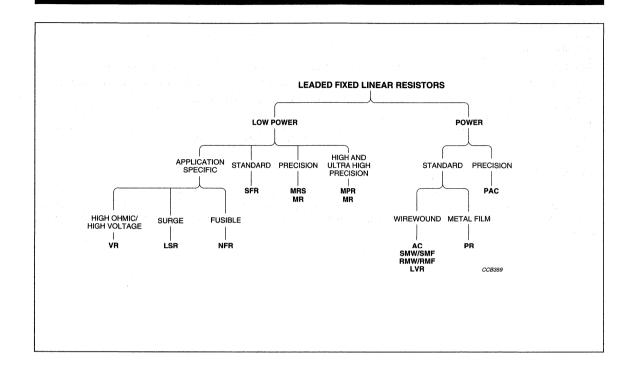
Our leaded resistors are made using thick and metal-film technologies. And, responding to market trends for miniaturization and high-accuracy, we have a strong programme of application specific resistors. The range is divided into two categories:

- Film resistors. For all general purpose consumer and industrial equipment.
  They are subdivided into metal-glaze, metal-film and fusible metal-film resistors. We also have a range of 1% tolerance metal-film resistors for professional equipment.
- Application specific resistors. For applications demanding the ultimate in accuracy or operation in extreme environments. These hi-rel types include leaded devices for precision, low-ohmic, high-ohmic, high voltage and power applications.

We hope you'll find this Data Handbook useful and easy to use. If you can't find the resistor you want, need more information or require a special selection, please call your nearest sales office. You'll find their address on the back cover of this book.

# Leaded Fixed Linear Resistors

|                                     | CONTENTS |
|-------------------------------------|----------|
|                                     | Page     |
| RESISTOR PROGRAMME                  | 3        |
| SELECTION GUIDE                     | 4        |
| GENERAL INTRODUCTION                | 6        |
| PACKAGING                           | . 17     |
| PRODUCT SPECIFICATIONS              |          |
| Standard metal film                 | 26       |
| Metal film                          | 39       |
| Fusible                             | 51       |
| Metal film precision                | 61       |
| Power metal film                    | 68       |
| High ohmic/high voltage             | 91       |
| High voltage surge                  | 109      |
| Cemented wirewound                  | 115      |
| Precision wirewound                 | 137      |
| Low ohmic values                    | 143      |
| Stand-up miniature power            | 150      |
| Radial mounted wirewound            | 156      |
| MAINTENANCE TYPES                   |          |
| Metal film                          | 164      |
| INDEX OF ORDERING CODE              | 179      |
| DATA HANDBOOK SYSTEM                | 181      |
| STANDARD VALUES (inside back cover) |          |


#### **DEFINITIONS**

| Data sheet status           |                                                                                       |
|-----------------------------|---------------------------------------------------------------------------------------|
| Objective specification     | This data sheet contains target or goal specifications for product development.       |
| Preliminary specification   | This data sheet contains preliminary data; supplementary data may be published later. |
| Product specification       | This data sheet contains final product specifications.                                |
| Application information     |                                                                                       |
| Where application informati | on is given, it is advisory and does not form part of the specification.              |

#### LIFE SUPPORT APPLICATIONS

These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such improper use or sale.

# **Resistor programme**



# Selection guide

| ADDUGATION              | T) (D) | TOLERANCE        | RESISTANCE                      | DISSIPATION |       | D10= |  |
|-------------------------|--------|------------------|---------------------------------|-------------|-------|------|--|
| APPLICATION             | TYPE   | (%)              | RANGE                           | at °C       | w     | PAGE |  |
| Metal film              |        |                  | <u> </u>                        | -           |       |      |  |
| Standard                | SFR16S |                  | 1 Ω to 3 MΩ                     |             | 0.50  |      |  |
|                         | SFR25  | 5                | 1 O to 10 MO                    | 70          | 0.40  | 26   |  |
|                         | SFR25H |                  | 1 $\Omega$ to 10 M $\Omega$     |             | 0.50  |      |  |
| Metal film              | MRS16S | 1                | 4.99 $\Omega$ to 1 M $\Omega$   | 70          | 0.40  | 39   |  |
|                         | MRS25  | <b>1</b>         | 1 $\Omega$ to 10 M $\Omega$     | ] /0        | 0.60  | 39   |  |
| Fusible                 | NFR25  | 5                | 1 Ω to 15 kΩ                    | 70          | 0.33  | 51   |  |
| T USIDIE                | NFR25H | 5                | 1 22 10 15 K22                  | .70         | 0.50  |      |  |
| Precision               | MPR24  | 0.05; 0.02; 0.01 | 24 Ω to 100 kΩ                  |             | 0.125 | 61   |  |
|                         | MPR34  | 0.03, 0.02, 0.01 |                                 | 70          | 0.25  |      |  |
|                         | MPR24  | 0.5; 0.25; 0.1   | 4.99 Ω to 1 MΩ                  | 70          | 0.25  |      |  |
|                         | MPR34  | 0.5, 0.25, 0.1   |                                 |             | 0.40  |      |  |
|                         | PR01   |                  | 0.22 Ω to 1 Ω                   | - 70        | 0.6   | 68   |  |
|                         | 11101  |                  | 1 Ω to 1 MΩ                     |             | 1     |      |  |
| Power                   | PR02   | 5                | 0.33 Ω to 1 Ω                   |             | 1.2   |      |  |
| 1 OWG                   | 11102  |                  | 1 $\Omega$ to 1 M $\Omega$      | ] ,0        | 2     |      |  |
|                         | PR03   |                  | 0.68 $\Omega$ to 1 $\Omega$     | 1           | 1.6   |      |  |
|                         | FROS   |                  | 1 $\Omega$ to 1 M $\Omega$      |             | 3     |      |  |
| Metal glaze             |        |                  |                                 |             |       |      |  |
|                         | VR25   | 1; 5; 10         | 100 k $\Omega$ to 22 M $\Omega$ |             | 0.25  | 91   |  |
| High ohmic/high voltage | VR37   | 1.5              | 100 kΩ to 33 MΩ                 | 70          | 0.50  | 97   |  |
|                         | VR68   | 1; 5             | 100 kΩ to 68 MΩ                 |             | 1.0   | 103  |  |
| High voltage surge      | LSR37  | 10; 20           | 900 Ω to 10 kΩ                  | 70          | 0.5   | 109  |  |

# Selection guide

| ADDITOATION            | T/DF             | TOLERANCE                             | RESISTANCE                            | DISSIPATION |       | DAGE |
|------------------------|------------------|---------------------------------------|---------------------------------------|-------------|-------|------|
| APPLICATION            | TYPE             | (%)                                   | RANGE                                 | at °C       | w     | PAGE |
| Wirewound              |                  |                                       |                                       |             |       |      |
|                        | AC01             |                                       | 0.1 Ω to 2 kΩ                         |             | 1     |      |
|                        | AC03             |                                       | 0.1 Ω to 4.7 kΩ                       | 1           | 3     |      |
|                        | AC04             |                                       | 0.1 $\Omega$ to 6.8 k $\Omega$        |             | 4     |      |
| 0                      | AC05             | _                                     | 0.1 Ω to 8.2 kΩ                       | 40          | 5     | 445  |
| Cemented               | AC07             | 5                                     | 0.1 $\Omega$ to 15 k $\Omega$         | 40          | 7     | 115  |
|                        | AC10             |                                       | $0.68~\Omega$ to $27~\text{k}\Omega$  |             | 10    |      |
|                        | AC15             |                                       | $0.82~\Omega$ to $39~\text{k}\Omega$  |             | 15    |      |
|                        | AC20             |                                       | 1.2 Ω to 56 kΩ                        | la ser e    | 20    |      |
|                        | PAC01            |                                       | $0.22~\Omega$ to $2.2~\text{k}\Omega$ |             | . 1   |      |
|                        | PAC02            |                                       | 0.1 Ω to 3.6 kΩ                       | 1           | 2     | 137  |
| D                      | PAC03            |                                       | 0.1 Ω to 4.7 kΩ                       | 25          | 3     |      |
| Precision              | PAC04            | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 0.1 Ω to 8.2 kΩ                       |             | 4     |      |
|                        | PAC05            | ] [                                   | $0.68~\Omega$ to $10~\text{k}\Omega$  |             | 5     |      |
| 4.                     | PAC06            |                                       | 0.68 $\Omega$ to 12 k $\Omega$        |             | 6     |      |
| Low ohmic values       | LVR05            | 5                                     | 0.01 $\Omega$ to 0.10 $\Omega$        | 70          | 5     | 143  |
| Stand up               |                  |                                       |                                       |             |       |      |
|                        | SMW02; SMF02     |                                       | 0.1 Ω to 47 kΩ                        | 70          | 2     | 150  |
| Miniature power        | SMW03; SMF03     | 5                                     |                                       |             | 3     |      |
|                        | SMW05; SMF05     |                                       |                                       |             | 5     |      |
| Radial                 |                  |                                       |                                       |             |       |      |
|                        | RMW03; RMF03     |                                       | $0.22~\Omega$ to $39~\text{k}\Omega$  |             | 3     |      |
|                        | RMW05; RMF05     |                                       | 0.47 $\Omega$ to 51 k $\Omega$        | 1           | 5     |      |
|                        | RMW07; RMF07     | 5 140                                 | $0.68~\Omega$ to $100~\text{k}\Omega$ | 70          | 7     | 156  |
| Power                  | RMW10; RMF10     | 5 and 10                              | 1 Ω to 150 kΩ                         | 70          | 10    |      |
|                        | RMW15            |                                       | 1 Ω to 10 kΩ                          |             | 15    |      |
|                        | RMW20            |                                       | 1.5 Ω to 15 kΩ                        |             | 20    |      |
| Maintenance types (not | for new designs) |                                       |                                       |             |       |      |
| Metal film             | MR25             | 0.5                                   | 1 Ω to 1 MΩ                           | 70          | 0.40  | 164  |
| IVICIAI IIIII          | MR30             | 0.5                                   | 1 22 (0 1 10122                       |             | 0.50  | 107  |
|                        | MR24D            | 1                                     | 10 Ω to 1 MΩ                          | 70          | 0.125 |      |
| MIL metal film         | MR34D            | 1                                     | 10 22 tO 1 1V122                      |             | 0.25  | 172  |
| IVIIL IIIELAI IIIIII   | MR24E/C          | 0.1; 0.25; 0.5; 1                     | 49.9 $\Omega$ to 1 M $\Omega$         | 125         | 0.1   | 1/2  |
|                        | MR34E/C          | 0.1, 0.20, 0.0, 1                     | 10.0 22 10 1 10122                    | 123         | 0.125 |      |

5

#### General introduction

#### INTRODUCTION

Data in data sheets is presented, whenever possible, according to a 'format', in which the following chapters are stated:

- TITLE
- FFATURES
- APPLICATIONS
- DESCRIPTION
- QUICK REFERENCE DATA
- ORDERING INFORMATION
- FUNCTIONAL DESCRIPTION
  - Product characterization
  - Limiting values
- MECHANICAL DATA
  - Outlines
  - Mass
  - Marking
  - Mounting
- TESTS AND REQUIREMENTS

The chapters listed above are explained in this section "General introduction Leaded fixed linear resistors", with detailed information (including "Packaging") in the relevant data sheet.

#### DESCRIPTION

Most types of conventional resistors have a cylindrical ceramic body, either rod or tube. For special purposes, a high-grade aluminium ceramic is used. The resistive element is either a carbon film, metal film, thick film or a wound wire element. Film types have been trimmed to the required ohmic resistance by cutting a helical groove in the resistive layer. This process is controlled completely by computer and yields a high reliability. The terminations are usually iron end caps onto which tinned connecting wires of electrolytic copper are welded.

All resistor bodies are coated with a coloured lacquer or enamel for protection. Dependent on types, this lacquer provides electrical, mechanical and/or climatic protection, also against soldering flux and cleaning solvents, in accordance with "MIL-STD-202E, method 215" and "IEC 60068-2-45".

#### ORDERING INFORMATION

Resistors are ordered by their **ordering code**, a 12-digit number. The packaging method and resistance code are integral parts of this number.

#### **FUNCTIONAL DESCRIPTION**

The functional description includes: nominal resistance range and tolerance, limiting voltage, temperature coefficient, absolute maximum dissipation, climatic category and stability.

The **limiting voltage** (DC or RMS) is the maximum voltage that may be continuously applied, see *"IEC publications 60115-1 and 60115-2"*.

Where applicable, **derating details** and **performance nomograms** are given, showing the relationship between power dissipation, ambient temperature, hot-spot temperature and maximum resistance drift after prolonged operation. For power resistors, graphs indicate the relationship between temperature rise and dissipation with lead-length or heatsinks as parameters.

The temperature rise in a resistor due to power dissipation, is determined by the laws of heat, conduction, convection and radiation. The maximum body temperature usually occurs in the middle of the resistor and is called the **hot-spot** temperature.

Heat conducted by the leads, which can be considerable in power types, must not reach the melting point of the solder at the joints. This condition may require the use of heatsinks and/or longer leads.

In the normal operating temperature range of film resistors the temperature rise at the hot-spot,  $\Delta T,$  is proportional to the power dissipated:  $\Delta T = A \times P.$  The proportionally constant 'A' gives the temperature rise per Watt of dissipated power and can be interpreted as a thermal resistance in K/W. This thermal resistance is a function of the dimensions of the resistor, the heat conductivity of the materials used and to a lesser degree, the way of mounting. The sum of the temperature rise and the ambient temperature is:

$$T_m = T_{amb} + \Delta T$$

where:

T<sub>m</sub> = hot-spot temperature

T<sub>amb</sub> = ambient temperature

 $\Delta T$  = temperature rise at hot-spot.

The stability of a film resistor during endurance tests is mainly determined by the hot-spot temperature and the resistance. The lower the resistance, other conditions remaining constant, the higher the stability due to greater film thickness.

# General introduction

#### Summarizing

| DESCRIPTION                                         | RELATIONSHIP         |
|-----------------------------------------------------|----------------------|
| Dimensions and conductance of materials determine   | heat resistance      |
| Heat resistance × dissipation gives                 | temperature rise     |
| Temperature rise + ambient temperature give         | hot-spot temperature |
| Hot-spot temperature and resistance value determine | stability            |

#### Performance

When specifying the performance of a resistor, the dissipation is given as a function of the hot-spot temperature, with the ambient temperature as a parameter.

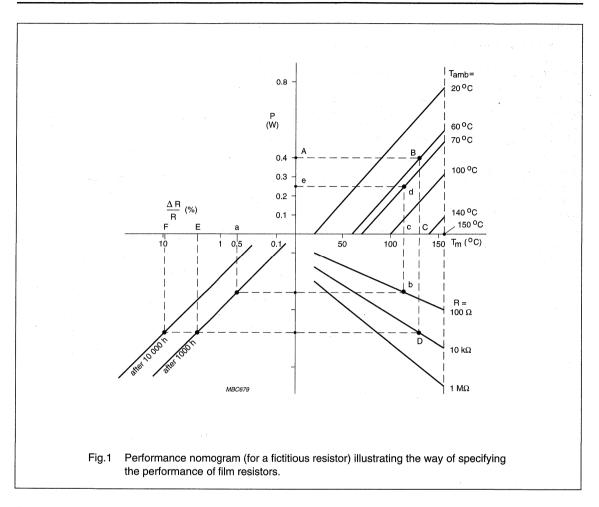
From  $\Delta T = A \times P$  and  $T_m = T_{amb} + \Delta T$  it follows that:

$$P = \frac{T_m - T_{amb}}{A}$$

If P is plotted against  $T_m$  for a constant value of A, parallel straight lines are obtained for different values of the ambient temperature.

The slope of these lines,

$$\frac{dP}{dT_m} = \frac{I}{A}$$


is the reciprocal of the heat resistance and is the characteristic for the resistor.

The stability  $\frac{\Delta R}{R}$  can be determined experimentally,

for instance after 1000 h, as a function of the hot-spot temperature with the resistance value as a parameter. It has been found that the resistance changes exponentially with temperature, giving a straight line

when log 
$$\frac{\Delta R}{R}$$
 is plotted against  $T_m.$ 

A combination of the graphs of P and  $\frac{\Delta R}{R}$  against  $T_m$  gives a nomogram from which the values of several variables can be determined for a resistor of a given size under different working conditions. An example of such a nomogram with fictitious values is given in Fig.1. The intersection of the broken line with the horizontal axis gives the hot-spot temperature under chosen conditions.



#### Example 1

Assume that a 10 k $\Omega$  resistor, whose characteristics are described by the nomogram, is to be operated at a power dissipation of 0.4 W and an ambient temperature of 60 °C. To establish whether this dissipation is allowable at this ambient temperature and, if so, what the expected stability of the resistor will be, draw a horizontal line in the upper half of the nomogram through point A (power dissipation of 0.4 W). This line intersects the 60 °C ambient temperature line at point B, corresponding to a hot-spot temperature of 128 °C (point C). This is safely below the maximum indicated by the broken line at 155 °C; therefore a dissipation of 0.4 W at an ambient temperature of 60 °C is well within the allowable limit.

Extend line BC into the lower half of the nomogram until it intersects the 10 k $\Omega$  line at point D. Draw a horizontal line to the left from point D until it intersects the line 'after 1000 h' and extend vertically to point E. This means that at a hot-spot temperature of 128 °C a resistance change of about 2.5% (point E) can be expected after 1000 hours of operation. After 10000 hours, the change will be about 9% (point F).

#### Example 2

Assume that a 100  $\Omega$  resistor, whose characteristics are described by the nomogram, is to be operated at an ambient temperature of 70 °C with a required stability after 1000 h of 0.5% (point a). It is desired to find the maximum permissible power dissipation. In the lower half of the nomogram, a line that corresponds to a stability after 1000 h of 0.5% intersects the 100  $\Omega$  resistance line at point b, corresponding to a hot-spot temperature of 112 °C (point c).

Extending the line (b-c) into the upper half of the nomogram, it intersects the line indicating an ambient temperature of 70 °C at point d, corresponding to a maximum permissible power dissipation of 0.25 W (point e).

If the power to be dissipated exceeds the value found, a resistor of higher value should be used.

#### The temperature coefficient

The temperature coefficient of resistance is a ratio which indicates the rate of increase (decrease) of resistance per Kelvin (K) increase (decrease) of temperature within a specified range, and is expressed in parts per million per K ( $\times 10^{-6}$ /K).

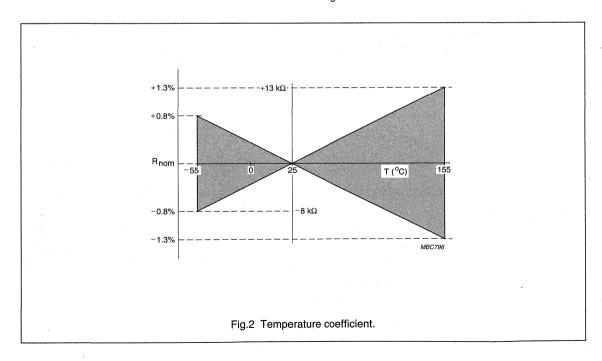
Example: If the temperature coefficient of a resistor of  $R_{nom}$  = 1 M $\Omega$  between -55 °C and +155 °C is  $\pm 100 \times 10^{-6}$ /K its resistance will be,

at 25 °C:

1000000  $\Omega$  (nominal = rated value)

at +155 °C:

1000000  $\Omega \pm (130 \times 100 \times 10^{-6}) \times 1000000 \Omega$ 


=  $1013000 \Omega$  or  $987000 \Omega$ 

at -55 °C:

1000000  $\Omega$  ±(80 × 100 × 10<sup>-6</sup>) × 1000000  $\Omega$ 

= 1008000  $\Omega$  or 992000  $\Omega$ 

If the temperature coefficient is specified as  $\leq 100 \times 10^{-6}/K$  the resistance will be within the shaded area as shown in Fig.2.



#### THERMAL RESISTANCE (Rth)

Thermal resistance prohibits the release of heat generated within the resistor to the surrounding environment. It is expressed in K/W and defines the surface temperature  $(T_{HS})$  of the resistor in relation to the ambient temperature  $(T_{amb})$  and the load (P = dissipation) of the resistor, as follows:

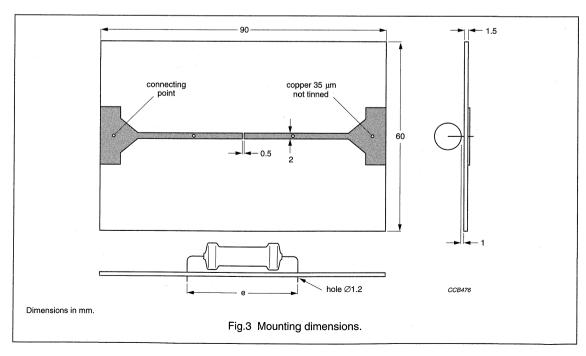
$$T_{HS} = T_{amb} + P \times R_{th}$$

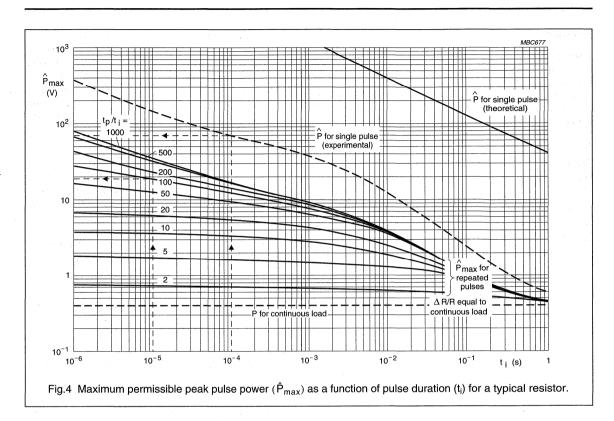
The thermal resistance given in the specification is determined in accordance with DIN 44050 ( $T_{amb}$  between 20 and 25 °C).

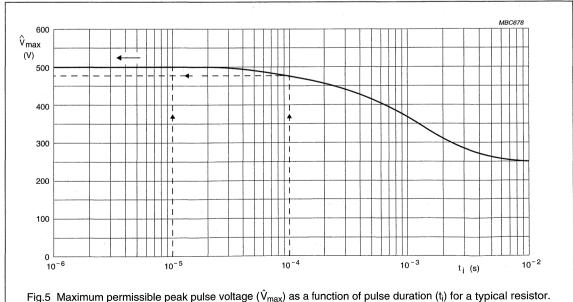
The resistor is mounted on a PCB (see Fig.3) which is set up vertically, with the resistor horizontal. Using an infrared camera, a thermal image is made of the resistor, thus defining the hot-spot and solder-spot temperatures.

It should be noted that different ways of mounting give differing results, i.e. mounting with a higher heat conductance gives a lower thermal resistance figure; mounting with a lower heat conductance gives a higher thermal resistance figure.

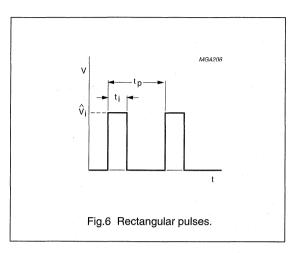
#### **PULSE-LOAD BEHAVIOUR**

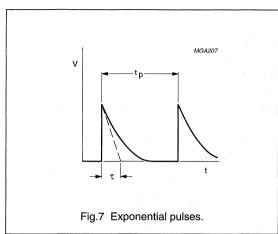

Knowing the thermal characteristics of a resistor, it is possible to calculate the dissipation due to a single pulse,


which will cause a resistor to fail by going open circuit. This theoretical maximum can be expressed in terms of maximum peak pulse power ( $\hat{P}_{max}$ ) and pulse duration ( $t_i$ ); the straight line in Fig.4 is a typical example for a film resistor. In practice, owing to variations in the resistance film, substrate, or spiralling, resistors fail at loads less than this theoretical maximum; the dashed line in Fig.4 shows the observed maximum for a resistor under single-pulse-load.


The magnitude of a single pulse at which failure occurs is of little practical value. More usually, the resistor must withstand a continuous train of pulses of repetition time  $t_p$  during which only a small resistance change is acceptable. This resistance change  $\Delta R/R$  is equal to the change permissible under continuous load conditions. The continuous pulse train and small permissible resistance change both reduce the maximum handling capability.

Using a computer program which takes account of all factors affecting behaviour under pulse loads, curves similar to those of Fig.4 are being produced for all resistor ranges.


Measurements have shown that the calculated value is accurate to within 10% of the true value. However, maximum peak pulses as indicated in Fig.5 should not be exceeded.








# General introduction





#### Definition of symbols (see Figs 4, 5, 6 and 7)

|                     | T                                              |
|---------------------|------------------------------------------------|
| SYMBOL              | DESCRIPTION                                    |
| Ŷ                   | applied peak pulse power                       |
| Ρ̂ <sub>max</sub>   | maximum permissible peak pulse power (Fig.4)   |
| Ŷ <sub>i</sub>      | applied peak pulse voltage (Figs 6 and 7)      |
| $\hat{V}_{max}$     | maximum permissible peak pulse voltage (Fig.5) |
| $R_{\text{nom}}$    | nominal resistance value                       |
| t <sub>i</sub>      | pulse duration (rectangular pulses)            |
| tp                  | pulse repetition time                          |
| τ                   | time constant (exponential pulses)             |
| T <sub>amb</sub>    | ambient temperature                            |
| T <sub>m(max)</sub> | maximum hot-spot temperature of the resistor   |

# Definitions of pulse-load behaviour; metal film resistors

#### SINGLE PULSE

The resistor is considered to be operating under single pulse conditions if, during its life, it is loaded with a limited number (approximately 1500) of pulses over long time intervals (greater than one hour).

#### REPETITIVE PULSE

The resistor is operating under repetitive pulse conditions if it is loaded by a continuous train of pulses of similar power.

#### **Determination of pulse-load**

The graphs in Figs 4 and 5 may be used to determine the maximum pulse-load for a resistor. The calculations assume:

$$T_{amb} = 70 \, ^{\circ}C$$

 $T_{\text{m}}$  is the maximum permissible hot-spot temperature for the relevant resistor family.

 $\Delta R/R$  equal to the permitted value for 1000 hours at continuous level.

· For repetitive rectangular pulses:

- $-\frac{\hat{V}_{i}^{2}}{R}$  must be lower than the value of  $\hat{P}_{max}$  given by the solid lines of Fig.4 for the applicable value of  $t_{i}$  and duty cycle  $t_{p}/t_{i}$ .
- $\hat{V}_i$  must be lower than the value of  $\hat{V}_{max}$  given in Fig.5 for the applicable value of  $t_i$ .
- For repetitive exponential pulses:
  - As for rectangular pulses, except that  $t_i = 0.5 \tau$
- · For single rectangular pulses:
  - $\ \ \, \frac{{\hat V_i}^2}{R} \ \, \text{must be lower than the $\hat P_{max}$ given by the} \\ \ \, \text{dashed line of Fig.4 for the applicable value of $t_i$}.$
  - $\hat{V}_i$  must be lower than the value of  $\hat{V}_{max}$  given in Fig.5 for the applicable value of  $t_i$ .

#### General introduction

#### **Examples**

Determine the stability of a typical resistor for operation under the following pulse-load conditions.

#### CONTINUOUS PULSE TRAIN

A 100  $\Omega$  resistor is required to operate under the following conditions:  $\hat{V}_i = 40$  V;  $t_i = 10^{-5}$  s;  $t_p = 10^{-3}$  s.

#### Therefore:

$$\hat{P} = \frac{40^2}{100} = 16 \text{ W} \text{ and } \frac{t_p}{t_i} = \frac{10^{-3}}{10^{-5}} = 100$$

For 
$$t_i$$
 = 10<sup>-5</sup> s and  $\frac{t_p}{t_i}$  = 100, Fig.4 gives  $\hat{P}_{max}$  = 19 W

and Fig.5 gives  $\hat{V}_{max} = 500$  V. As the operating conditions  $\hat{P} = 16$  W and  $\hat{V}_i = 40$  V are lower than these limiting values, this resistor can be safely used.

#### SINGLE PULSE

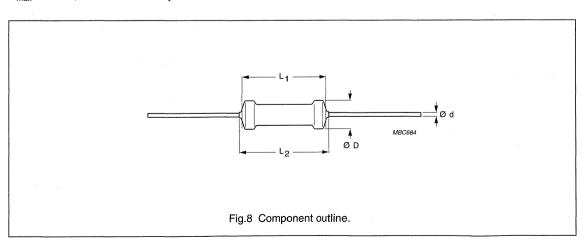
A 1000  $\Omega$  resistor is required to operate under the following conditions:

$$\hat{V}_i = 200 \text{ V}; t_i = 10^{-4} \text{ s}$$

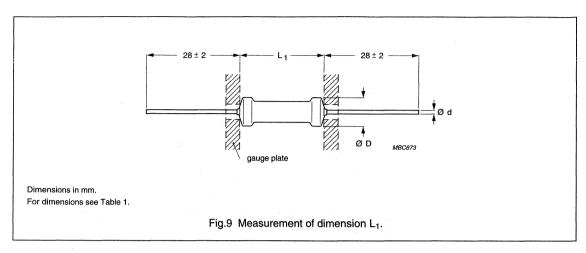
Therefore:

$$\hat{P}_{\text{max}} = \frac{200^2}{1000} = 40 \text{ W}$$

The dashed curve of Fig.4 shows that at  $t_i = 10^{-4}$  s, the permissible  $\hat{P}_{max} = 70$  W and Fig.5 shows a permissible  $\hat{V}_{max}$  of 480 V, so this resistor may be used.


#### MECHANICAL DATA

A dimensional sketch and if applicable, a table of dimensions is given. The lead length of axial types is not usually stated if the resistors are only available on tape.


The sketch (see Fig.8) does include however, length (L), diameter of the body ( $\oslash$ D) and the lead diameter ( $\oslash$ d). For certain types, the length is stated as L<sub>1</sub> and L<sub>2</sub>; L<sub>1</sub> is the body length, L<sub>2</sub> is the body length plus lacquer on the leads. By specifying L<sub>1</sub>/L<sub>2</sub>, the dimensional 'clean lead to clean lead' properties can be determined.

The length of the cylindrical body (L<sub>1</sub>) is measured by inserting the leads into the holes of two identical gauge plates (Fig.9) and moving these plates parallel to each other, until the resistor body is clamped without deformation ("IEC publication 60194").

This method does not apply to rectangular resistors, 'stand-up' types and wirewound resistors with side terminations.



# General introduction



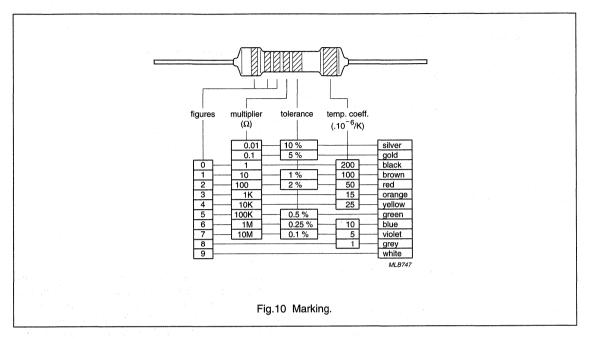
The relationship between the diameter of the leads and the diameter of the holes in the gauge plate is shown in Table 1.

Table 1 Lead diameter and hole dimensions

| Ød<br>(mm) | HOLE DIAMETER<br>(mm) |
|------------|-----------------------|
| 0.5        | 0.8                   |
| 0.6        | 1.0                   |
| 0.7        | 1.0                   |
| 0.8        | 1.2                   |

#### Mass

The mass is given per 100 resistors.


#### Marking

The resistors are either colour coded or provided with an identification stamp. The colour code consists of a number of coloured bands in accordance with IEC publication 60062: "Colour code for fixed resistors". See also "IEC 60115-1", clause 4.5. The coloured bands indicate the nominal resistance, the tolerance on the resistance and, if applicable, the temperature coefficient.

A maximum of bands may be used, but in some instances there are fewer, e.g. if the products are too small.

For safety reasons the coloured tolerance rings on the types "VR25, VR37, VR68 and LSR37" are yellow (instead of gold) for 5% and grey (instead of silver) for 10%.

### General introduction



The **resistance code** consists of either three or four bands and is followed by a band representing the **tolerance**. The **temperature coefficient** is to the right of the tolerance band and is usually positioned on the cap (MRS types), as a wide band. When five or six bands in total are used, the last band will always be the wider one.

The **resistance code** includes the first two or three **significant figures** of the resistance value (in ohms), followed by an **indicator**. This is a factor by which the significant-figure value must be multiplied to find the relevant resistance value. Whether two or three significant figures are represented depends on the tolerance:  $\pm 2\%$  and higher requires two bands;  $\pm 1\%$  and lower requires three bands.

The 'figures' refer to the first two or three digits of the resistance value of the standard series of values in a decade, in accordance with "IEC publication 60063" as indicated in the relevant data sheet and shown on the inside back cover of this handbook.

Certain resistors are not coded by colour bands but by a stamp giving pertinent data (alphanumeric marking). This is adopted with MIL types MR24E/C/D and MR34E/C/D. Resistors outside the standard "IEC 60063" series of types MPR24 and MPR34, are stamped.

All wirewound resistors are stamped.

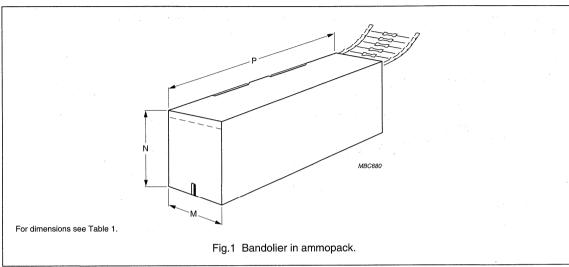
#### **Body colours**

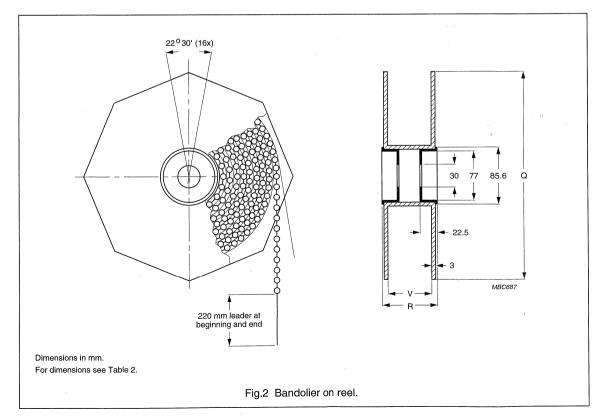
**Table 2** The resistor bodies are lacquered in different colours to simplify identification

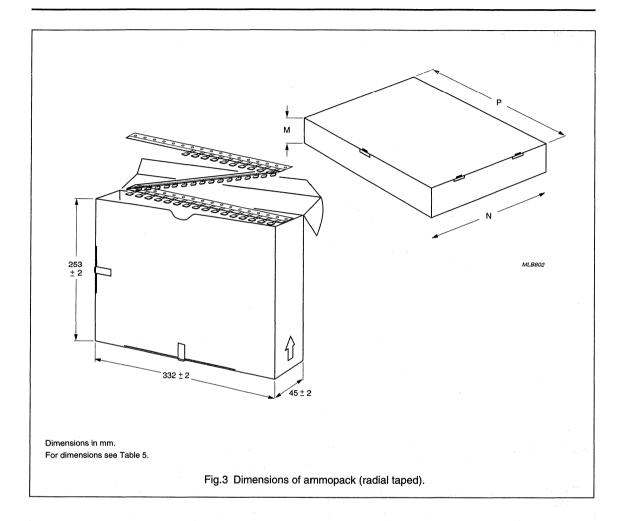
| COLOUR             | ТҮРЕ                                                                                                                    |
|--------------------|-------------------------------------------------------------------------------------------------------------------------|
| Light green        | SFR25                                                                                                                   |
| Grey               | NFR25, NFR25H                                                                                                           |
| Green              | MR25, MR30, MR24E/C/D, MR34E/C/D,<br>MPR24, MPR34, MRS16S, MRS25,<br>AC01/03/04/05/07/10/15/20,<br>PAC01/02/03/04/05/06 |
| Light blue         | VR25, VR37, VR68, SFR16S, LSR37                                                                                         |
| Red                | PR01, PR02, PR03                                                                                                        |
| Red-brown          | SFR25H                                                                                                                  |
| Ceramic<br>encased | LVR05, SMW/SMF02/03/05,<br>RMW03/05/07/10/15/20, RMF03/05/07/10                                                         |

#### Mounting

Most types with straight axial leads and most in the 'stand-up' version are suitable for processing on automatic insertion equipment, cutting and bending machines.


General introduction


#### **TESTS AND REQUIREMENTS**


Essentially all tests on resistors are carried out in accordance with the schedule of "IEC publication 60115-1" in the specified climatic category and in accordance with IEC publication 60068: "Recommended basic climatic and mechanical robustness testing procedure for electronic components". In some instances deviations from the IEC recommendations are made.

#### **PACKAGING**

#### Dimensions of ammopack and reel







#### Products with straight leads

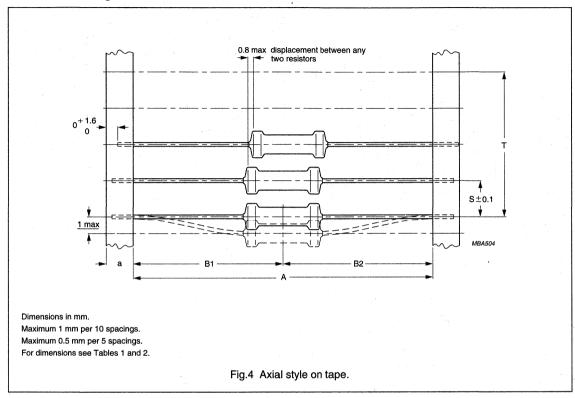



Table 1 Resistor type, quantities and packaging dimensions for axial taped in ammopack; see Figs 1 and 4

|         |          | 1                        | i i        | PACKAGING                                 | DIMENSI   | ONS       |           |           |
|---------|----------|--------------------------|------------|-------------------------------------------|-----------|-----------|-----------|-----------|
| PRODUCT | QUANTITY | AXIAL TAPED ON BANDOLIER |            |                                           |           |           | ММОРАС    | K         |
| TYPE    | GOARTIT  | a<br>(mm)                | A<br>(mm)  | B <sub>1</sub> – B <sub>2</sub>  <br>(mm) | S<br>(mm) | M<br>(mm) | N<br>(mm) | P<br>(mm) |
| OFD460  | 1000     | 6 ±0.5                   | 52.5 ±1.5  | ±1.2                                      | 5         | 75        | 30        | 140       |
| SFR16S  | 5000     | 6 ±0.5                   | 52.5 ±1.5  | ±1.2                                      | 5         | 75        | 73        | 270       |
| SFR25   | 1000     | 6 ±0.5                   | 52 +1.5/-0 | ±1.2                                      | 5         | 82        | 28        | 262       |
|         | 5000     | 6 ±0.5                   | 52 +1.5/-0 | ±1.2                                      | 5         | 78        | 98        | 270       |
| OFFICE  | 1000     | 6 ±0.5                   | 52 +1.5/-0 | ±1.2                                      | 5         | 82        | 28        | 262       |
| SFR25H  | 5000     | 6 ±0.5                   | 52 +1.5/0  | ±1.2                                      | 5         | 78        | 98        | 270       |
| NEDOS   | 1000     | 6 ±0.5                   | 52 +1.5/-0 | ±1.2                                      | 5         | 82        | 28        | 262       |
| NFR25   | 5000     | 6 ±0.5                   | 52 +1.5/-0 | ±1.2                                      | 5         | 78        | 98        | 270       |
| NEDOSLI | 1000     | 6 ±0.5                   | 52 +1.5/-0 | ±1.2                                      | 5         | 82        | 28        | 262       |
| NFR25H  | 5000     | 6 ±0.5                   | 52 +1.5/-0 | ±1.2                                      | 5         | 78        | 98        | 270       |
| MDO400  | 1000     | 6 ±0.5                   | 52 +1.5/0  | ±0.5                                      | 5         | 75        | 30        | 140       |
| MRS16S  | 5000     | 6 ±0.5                   | 52 +1.5/-0 | ±0.5                                      | 5         | 75        | 73        | 270       |

# Packaging

|         | 100         | PACKAGING DIMENSIONS     |            |                                        |           |           |           |           |  |
|---------|-------------|--------------------------|------------|----------------------------------------|-----------|-----------|-----------|-----------|--|
| PRODUCT | QUANTITY    | AXIAL TAPED ON BANDOLIER |            |                                        |           | AMMOPACK  |           |           |  |
| TYPE    | QUANTITI    | a<br>(mm)                | A<br>(mm)  | B <sub>1</sub> – B <sub>2</sub>   (mm) | S<br>(mm) | M<br>(mm) | N<br>(mm) | P<br>(mm) |  |
| MRS25   | 1 000       | 6 ±0.5                   | 52 +1.5/-0 | ±1.2                                   | 5         | 82        | 28        | 262       |  |
| WING25  | 5000        | 6 ±0.5                   | 52 +1.5/-0 | ±1.2                                   | 5         | 78        | 107       | 270       |  |
| MR25    | 1000        | 6 ±0.5                   | 52 +1.5/-0 | ±1.2                                   | 5         | 82        | 28        | 262       |  |
| MR30    | 1000        | 6 ±0.5                   | 52 +1.5/-0 | ±1.2                                   | 5         | 77        | 34        | 265       |  |
| MPR24   | 500 or 1000 | 6 ±0.2                   | 63.5 ±1.5  | ±1.2                                   | 5         | 97        | 29        | 262       |  |
| MPR34   | 500 or 1000 | 6 ±0.2                   | 63.5 ±1.5  | ±1.2                                   | 5         | 97        | 39        | 262       |  |
|         | 1000        | 6 ±0.5                   | 52 +1.5/-0 | ±1.0                                   | 5         | 82        | 28        | 262       |  |
| VR25    | 2000        | 6 ±0.5                   | 26 +1.5/-0 | ±1.0                                   | 5         | 50        | 50        | 255       |  |
|         | 5000        | 6 ±0.5                   | 52 +1.5/-0 | ±1.2                                   | 5         | 78        | 98        | 270       |  |
| VR37    | 1000        | 6 ±0.5                   | 52 +1.5/-0 | ±1.2                                   | 5         | 83        | 60        | 262       |  |
| VR68    | 500         | 5 ±0.5                   | 66.7 ±1.5  | ±1.2                                   | 10        | 85        | 112       | 258       |  |
| LSR37   | 1000        | 6 ±0.5                   | 52 +1.5/-0 | ±1.2                                   | 5         | 83        | 60        | 262       |  |
| PR01    | 1000        | 6 ±0.5                   | 73 ±1.5    | ±1.2                                   | 5         | 97        | 28        | 262       |  |
| PR01    | 5000        | 6 ±0.5                   | 52 +1.5/-0 | ±1.2                                   | 5         | 78        | 98        | 270       |  |
| PR02    | 1000        | 6 ±0.5                   | 73 ±1.5    | ±1.2                                   | 5         | 97        | 59        | 262       |  |
| PR02    | 1000        | 6 ±0.5                   | 52 +1.5/-0 | ±1.2                                   | 5         | 83        | 60        | 262       |  |
| PR03    | 500         | 6 ±0.5                   | 80 ±1.5    | ±1.2                                   | 10        | 99        | 77        | 259       |  |
| AC01    | 1000        | 6 ±0.5                   | 63 ±4      | ±1.2                                   | 10        | 85        | 60        | 263       |  |
| AC03    | 500         | 6 ±0.5                   | 63 ±4      | ±1.2                                   | 10        | 85        | 77        | 259       |  |
| AC04    | 500         | 6 ±0.5                   | 63 ±4      | ±1.2                                   | 10        | 85        | 77        | 259       |  |
| AC05    | 500         | 6 ±0.5                   | 63 ±4      | ±1.2                                   | 10        | 85        | 112       | 259       |  |
| AC07    | 500         | 6 ±0.5                   | 74 ±4      | ±1.2                                   | 10        | 93        | 115       | 259       |  |
| PAC01   | 500         | 6 ±0.5                   | 63 ±1      | ±1.2                                   | 10        | 85        | 60        | 263       |  |
| PAC02   | 500         | 6 ±0.5                   | 63 ±1      | ±1.2                                   | 10        | 85        | 60        | 263       |  |
| PAC03   | 500         | 6 ±0.5                   | 63 ±1      | ±1.2                                   | 10        | 85        | 60        | 263       |  |
| PAC04   | 500         | 6 ±0.5                   | 71 ±1      | ±1.2                                   | 10        | 97        | 120       | 273       |  |
| PAC05   | 500         | 6 ±0.5                   | 71 ±1      | ±1.2                                   | 10        | 97        | 120       | 273       |  |
| PAC06   | 500         | 6 ±0.5                   | 71 ±1      | ±1.2                                   | 10        | 97        | 120       | 273       |  |

**Packaging** 

Table 2 Resistor type, quantities and packaging dimensions for axial taped on reel; see Figs 2 and 4

| 1 v v   |          | PACKAGING DIMENSIONS |                          |                                           |           |           |           |           |
|---------|----------|----------------------|--------------------------|-------------------------------------------|-----------|-----------|-----------|-----------|
| PRODUCT | QUANTITY | AX                   | AXIAL TAPED ON BANDOLIER |                                           |           | REEL      |           |           |
| TYPE    |          | a<br>(mm)            | A<br>(mm)                | B <sub>1</sub> – B <sub>2</sub>  <br>(mm) | S<br>(mm) | Q<br>(mm) | V<br>(mm) | R<br>(mm) |
| SFR16S  | 5000     | 6 ±0.5               | 52.5 ±1.5                | ±1.2                                      | 5         | 265       | 75        | 86        |
| SFR25   | 5000     | 6 ±0.5               | 52 +1.5/-0               | ±1.2                                      | 5         | 305       | 75        | 86        |
| SFR25H  | 5000     | 6 ±0.5               | 52 +1.5/-0               | ±1.2                                      | 5         | 305       | 75        | 86        |
| NFR25   | 5000     | 6 ±0.5               | 52 +1.5/-0               | ±1.2                                      | 5         | 305       | 75        | 86        |
| NFR25H  | 5000     | 6 ±0.5               | 52 +1.5/-0               | ±1.2                                      | 5         | 305       | 75        | 86        |
| MRS16S  | 5000     | 6 ±0.5               | 52 +1.5/-0               | ±0.5                                      | 5         | 265       | 75        | 86        |
| MRS25   | 5000     | 6 ±0.5               | 52 +1.5/-0               | ±1.2                                      | 5         | 305       | 75        | 86        |
| MPR24   | 5000     | 6 ±0.2               | 63.5 ±1.5                | ±1.2                                      | 5         | 305       | 90        | 99        |
| MPR34   | 5000     | 6 ±0.2               | 63.5 ±1.5                | ±1.2                                      | 5         | 356       | 90        | 99        |
| VR25    | 5000     | 6 ±0.5               | 52 +1.5/-0               | ±1.2                                      | 5         | 305       | . 75      | 86        |
| VR37    | 5000     | 6 ±0.5               | 52 +1.5/-0               | ±1.2                                      | 5         | 356       | 75        | 86        |
| LSR37   | 5000     | 6 ±0.5               | 52 +1.5/-0               | ±1.2                                      | 5         | 356       | 75        | 86        |
| PR01    | 5000     | 6 ±0.5               | 73 ±1.5                  | ±1.2                                      | 5         | 305       | 90        | 99        |

#### **Products with radial leads**

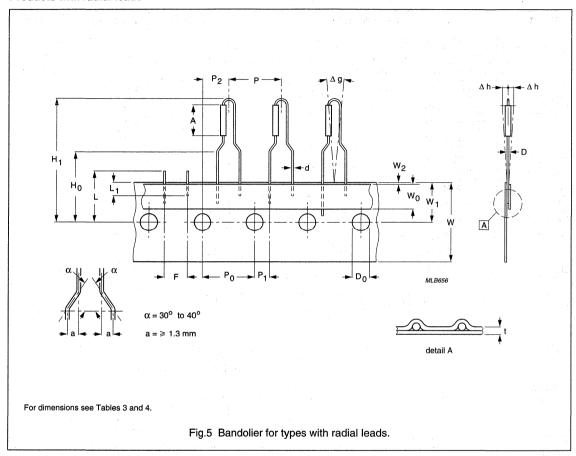



Table 3 Product dependent tape dimensions; see Fig.5

| SYMBOL         | PARAMETER             | TYPE         | VALUE             | TOLERANCE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | UNIT |
|----------------|-----------------------|--------------|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| D              | maximum body diameter |              | A                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | mm   |
| Α              | maximum body length   | see detailed | product specifica | tion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | mm   |
| d              | lead wire diameter    |              |                   | ing the second section of the second section is a second section of the section of the second section of the section of the second section of the | mm   |
|                |                       | SFR25        | 29                | max.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | mm   |
|                |                       | NFR25        | 29                | max.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | mm   |
| ш.             |                       | NFR25H       | 29                | max.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | mm   |
| H <sub>1</sub> | component height      | PR01         | 29                | max.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | mm   |
|                |                       | PR02         | 29                | ±3.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | mm   |
|                |                       | AC01         | 29                | ±3.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | mm   |

Table 4 Tape dimensions; non-product dependent; see Fig.5

| SYMBOL         | PARAMETER                                       | VALUE | TOLERANCE  | UNIT |
|----------------|-------------------------------------------------|-------|------------|------|
| Р              | pitch of components                             | 12.7  | ±1.0       | mm   |
| P <sub>0</sub> | feed-hole pitch                                 | 12.7  | ±0.2       | mm   |
| -              | cumulative pitch error per 20 spacings          |       | 1.0        |      |
| P <sub>1</sub> | feed-hole centre to lead at topside at the tape | 3.85  | ±0.5       | mm   |
| P <sub>2</sub> | feed-hole centre to body centre                 | 6.35  | ±1.0       | mm   |
| F              | lead-to-lead distance                           | 4.8   | +0.7/-0    | mm   |
| Δh             | component alignment                             | 0     | ±1.2       | mm   |
| Δg             | component alignment                             | 0     | ±3°        | deg  |
| W              | tape width                                      | 18.0  | ±0.5       | mm   |
| Wo             | minimum hold down tape width                    | 5.5   | _          | mm   |
| W <sub>1</sub> | hole position                                   | 9.0   | ±0.5       | mm   |
| W <sub>2</sub> | maximum hold down tape position                 | 0.5   | ÷xili      | mm   |
| H <sub>0</sub> | lead wire clinch height                         | 16.5  | ±0.5       | mm   |
| Н              | height of component from tape centre            | 19.5  | ±1         | mm   |
| D <sub>0</sub> | feed-hole diameter                              | 4.0   | ±0.2       | mm   |
| t              | total tape thickness                            | 0.4   | -0/+0.5    | mm   |
| L              | maximum length of snipped lead                  | 11.0  | <b>-</b> 4 | mm   |
| L <sub>1</sub> | minimum lead wire (tape portion) shortest lead  | 2.5   | =          | mm   |

Table 5 Resistor type, quantities and dimensions of the packaging for radial taped in ammopack; see Fig.3

| PRODUCT<br>TYPE |          | PACKAGING DIMENSIONS  AMMOPACK |           |           |  |
|-----------------|----------|--------------------------------|-----------|-----------|--|
|                 | QUANTITY |                                |           |           |  |
|                 | GOARTIT  | M<br>(mm)                      | N<br>(mm) | P<br>(mm) |  |
| SFR25           | 4000     | 45                             | 262       | 330       |  |
| NFR25           | 4000     | 45                             | 262       | 330       |  |
| NFR25H          | 4000     | 45                             | 262       | 330       |  |
| PR01            | 4000     | 45                             | 262       | 330       |  |
| PR02            | 3000     | 45                             | 262       | 330       |  |
| AC01            | 2500     | 45                             | 262       | 330       |  |

#### Products with cropped and formed leads

Table 6 Resistor type, quantities and dimensions of the packaging for cropped and formed, loose in box

| PRODUCT<br>TYPE | QUANTITY    | PACKAGING DIMENSIONS  AMMOPACK |      |     |
|-----------------|-------------|--------------------------------|------|-----|
|                 |             |                                |      |     |
|                 |             | PR01                           | 1000 | 105 |
| PR02            | 500 or 1000 | 105                            | 70   | 205 |
| PR03            | 250 or 500  | 105                            | 70   | 205 |

1998 Aug 28 23

# PRODUCT SPECIFICATIONS

#### SFR16S/25/25H

#### **FEATURES**

- · Low cost
- Low noise
- Small size (SFR16S).

#### **APPLICATIONS**

General purpose resistors.

#### **DESCRIPTION**

A homogeneous film of metal alloy is deposited on a high grade ceramic body. After a helical groove has been cut in the resistive layer, tinned connecting leads of electrolytic copper are welded to the end-caps.

The resistors are coated with a coloured lacquer (light-blue for

type SFR16S; light-green for type SFR25 and red-brown for type SFR25H) which provides electrical, mechanical and climatic protection. The encapsulation is resistant to all cleaning solvents, in accordance with "MIL-STD-202E, method 215", and "IEC 60068-2045".

#### QUICK REFERENCE DATA

| DECODIDATION                                             | VALUE                       |                                   |                             |  |
|----------------------------------------------------------|-----------------------------|-----------------------------------|-----------------------------|--|
| DESCRIPTION                                              | SFR16S                      | SFR25                             | SFR25H                      |  |
| Resistance range                                         | 1 Ω to 3 MΩ                 | 1 $\Omega$ to 10 M $\Omega$ ar    | nd jumper (0 Ω)             |  |
| Resistance tolerance                                     |                             | ±5%, E24 series                   |                             |  |
| Temperature coefficient:                                 |                             |                                   |                             |  |
| R < 4.7 Ω                                                | ≤±250 × 10 <sup>-6</sup> /K | $\leq \pm 100 \times 10^{-6} / K$ | ≤±100 × 10 <sup>-6</sup> /K |  |
| $4.7 \Omega \le R \le 100 \text{ k}\Omega$               | ≤±100 × 10 <sup>-6</sup> /K | $\leq \pm 100 \times 10^{-6} / K$ | ≤±100 × 10 <sup>-6</sup> /K |  |
| 100 kΩ < R ≤ 1 MΩ                                        | ≤±250 × 10 <sup>-6</sup> /K | $\leq \pm 100 \times 10^{-6}$ /K  | ≤±100 × 10 <sup>-6</sup> /K |  |
| $R > 1 M\Omega$                                          | ≤±250 × 10 <sup>-6</sup> /K | $\leq \pm 250 \times 10^{-6} / K$ | ≤±250 × 10 <sup>-6</sup> /K |  |
| Absolute maximum dissipation at T <sub>amb</sub> = 70 °C | 0.5 W                       | 0.4 W                             | 0.5 W                       |  |
| Thermal resistance, R <sub>th</sub>                      | 170 K/W                     | 200 K/W                           | 150 K/W                     |  |
| Maximum permissible voltage                              | 200 V                       | 250 V                             | 350 V                       |  |
| Noise:                                                   |                             |                                   |                             |  |
| R < 68 kΩ                                                | max. 0.1 μV/V               | max. 0.1 μV/V                     | max. 0.1 μV/V               |  |
| 68 kΩ ≤ R ≤ 100 kΩ                                       | max. 0.5 μV/V               | max. 0.1 μV/V                     | max. 0.1 μV/V               |  |
| 100 kΩ ≤ R ≤ 1 MΩ                                        | max. 1.5 μV/V               | max. 0.1 μV/V                     | max. 0.1 μV/V               |  |
| $R > 1 M\Omega$                                          | max. 1.5 μV/V               | max. 1.5 μV/V                     | max. 1.5 μV/V               |  |
| Basic specifications                                     | IE                          | EC 60115-1 and 60115-2            |                             |  |
| Climatic category (IEC 60068)                            |                             | 55/155/56                         |                             |  |
| Stability, ∆R/R max., after:                             |                             |                                   |                             |  |
| load:                                                    |                             |                                   |                             |  |
| R≤1 MΩ                                                   | ±1% + 0.05 Ω                | $\pm 1\% + 0.05 \Omega$           | ±1% + 0.05 Ω                |  |
| $R > 1 M\Omega$                                          | ±1% + 0.05 Ω                | $\pm 1\% + 0.05 \Omega$           | ±2% + 0.1 Ω                 |  |
| climatic tests:                                          |                             |                                   |                             |  |
| R≤1 MΩ                                                   | ±1% + 0.05 Ω                | $\pm 1\% + 0.05 \Omega$           | ±1% + 0.05 Ω                |  |
| R > 1 MΩ                                                 | ±1% + 0.05 Ω                | $\pm 1\% + 0.05 \Omega$           | ±2% + 0.1 Ω                 |  |
| soldering                                                | ±0.25% + 0.05 Ω             | $\pm 0.25\% + 0.05 \Omega$        | ±0.25% + 0.05 Ω             |  |
| short time overload                                      | ±0.25% + 0.05 Ω             | $\pm 0.25\% + 0.05 \Omega$        | ±1% + 0.05 Ω                |  |

#### SFR16S/25/25H

#### ORDERING INFORMATION

Table 1 Ordering code indicating resistor type and packaging

|                             | ORDERING CODE 23      |                |              |                   |  |
|-----------------------------|-----------------------|----------------|--------------|-------------------|--|
|                             | BANDOLIER IN AMMOPACK |                |              | BANDOLIER ON REEL |  |
| TYPE                        | RADIAL TAPED          | STRAIGHT LEADS |              | STRAIGHT LEADS    |  |
|                             | 4000 units            | 1000 units     | 5000 units   | 5000 units        |  |
| SFR16S                      | _                     | 22 187 73      | 22 187 53    | 22 187 83         |  |
| SFR25                       | 06 184 03             | 22 181 53      | 22 181 43    | 22 181 63         |  |
| SFR25 jumper <sup>(1)</sup> | <u> </u>              | <del>-</del>   | 22 181 90019 |                   |  |
| SFR25H                      | <u>-</u>              | 22 186 16      | 22 186 76    | 22 186 26         |  |

#### Note

1. The jumper has a maximum resistance  $R_{max} = 10 \text{ m}\Omega$  at 5 A.

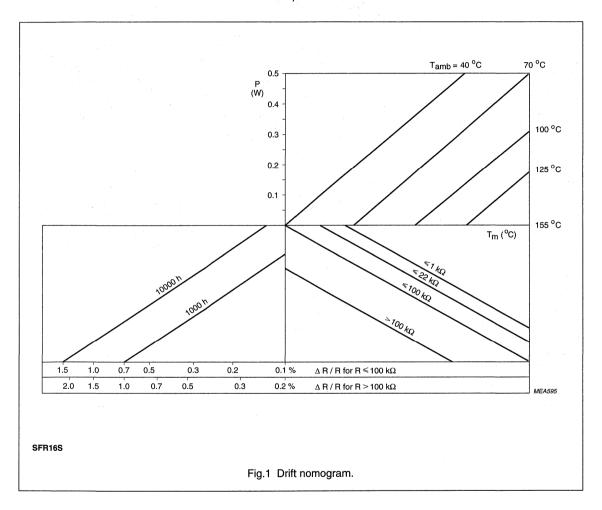
#### Ordering code (12NC)

- The resistors have a 12-digit ordering code starting with 23
- The subsequent 7 digits indicate the resistor type and packaging; see Table 1.
- The remaining 3 digits indicate the resistance value:
  - The first 2 digits indicate the resistance value.
  - The last digit indicates the resistance decade in accordance with Table 2.

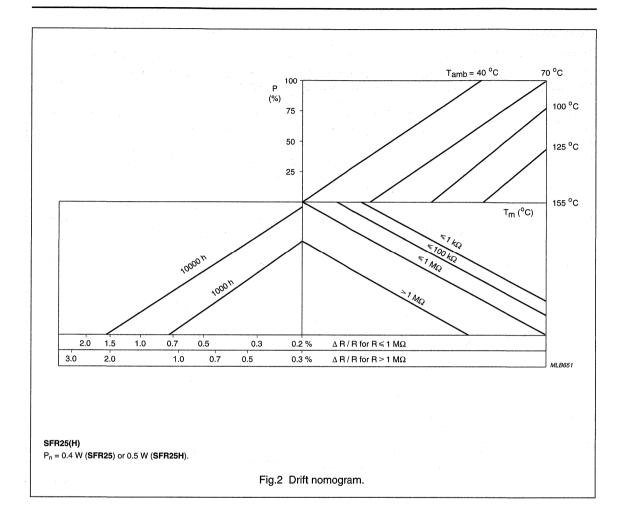
Table 2 Last digit of 12NC

| RESISTANCE<br>DECADE | LAST DIGIT |
|----------------------|------------|
| 1 to 9.76 Ω          | 8          |
| 10 to 97.6 Ω         | 9          |
| 100 to 976 Ω         | . 1        |
| 1 to 9.76 kΩ         | 2          |
| 10 to 97.6 kΩ        | 3          |
| 100 to 976 kΩ        | 4          |
| 1 to 9.76 MΩ         | 5          |
| 10 ΜΩ                | 6          |

#### ORDERING EXAMPLE


The ordering code of a SFR25 resistor, value  $5600~\Omega$   $\pm 5\%$ , taped on a bandolier of 5000 units in ammopack is: 2322 181 43562.

# SFR16S/25/25H


#### **FUNCTIONAL DESCRIPTION**

#### **Product characterization**

Standard values of nominal resistance are taken from the E24 series for resistors with a tolerance of  $\pm 5\%$ . The values of the E24 series are in accordance with "IEC publication 60063".



# SFR16S/25/25H



1998 Aun 28 29

# SFR16S/25/25H

#### **Limiting values**

| TYPE   | LIMITING VOLTAGE <sup>(1)</sup> (V) | LIMITING POWER<br>(W) |
|--------|-------------------------------------|-----------------------|
| SFR16S | 200                                 | 0.5                   |
| SFR25  | 250                                 | 0.4                   |
| SFR25H | 350                                 | 0.5                   |

#### Note

1. The maximum voltage that may be continuously applied to the resistor element, see "IEC publication 60115-1".

The maximum permissible hot-spot temperature is 155 °C.

#### **DERATING**

The power that the resistor can dissipate depends on the operating temperature; see Fig.3.

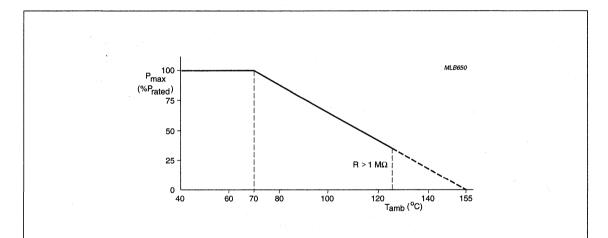
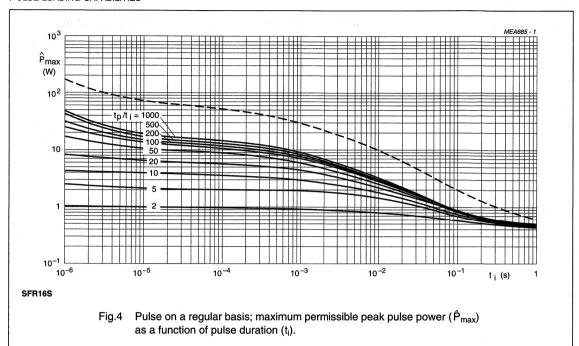
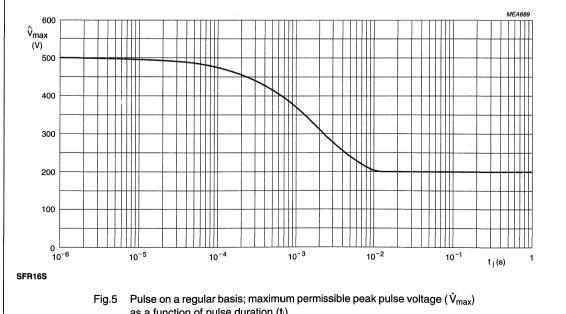
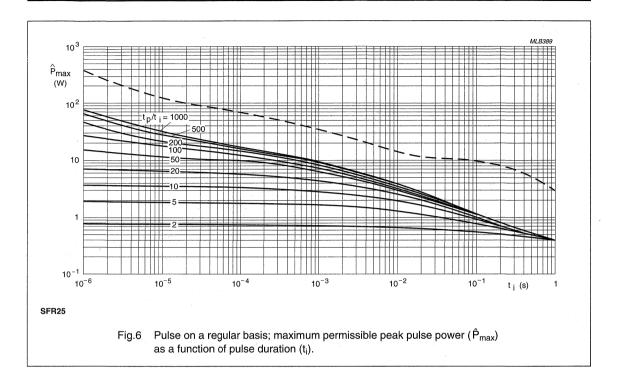





Fig.3 Maximum dissipation (P<sub>max</sub>) in percentage of rated power as a function of the ambient temperature (T<sub>amb</sub>).

# SFR16S/25/25H


#### PULSE LOADING CAPABILITIES

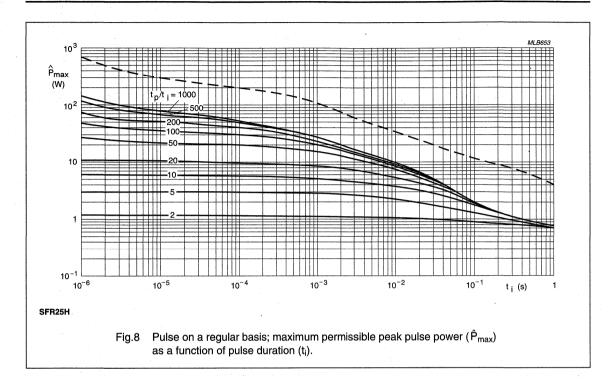


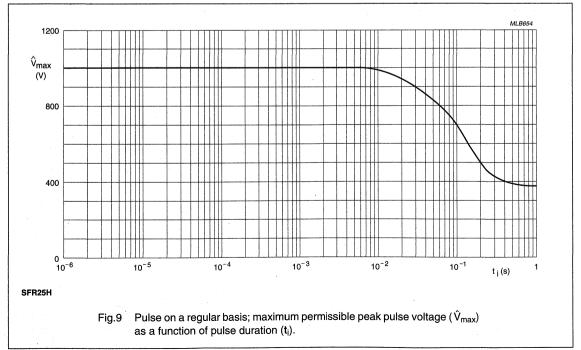


as a function of pulse duration (ti).

# SFR16S/25/25H



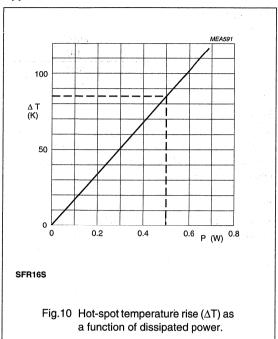

600  $\hat{v}_{\text{max}}$ 500 400 300 200 100 10-6 10<sup>-2</sup>  $10^{-5}$  $10^{-4}$  $10^{-3}$  $10^{-1}$ t ; (s) SFR25 Fig.7 Pulse on a regular basis; maximum permissible peak pulse voltage ( $\hat{V}_{max}$ )

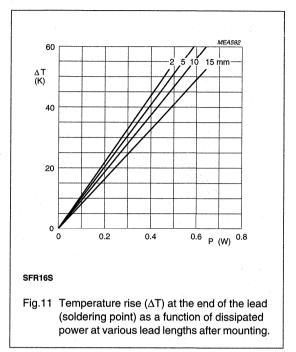

as a function of pulse duration (ti).

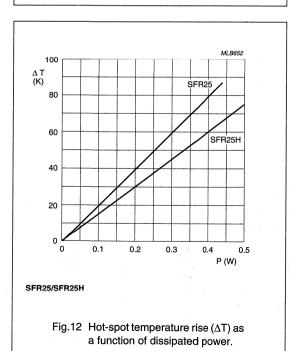
Philips Components Product specification

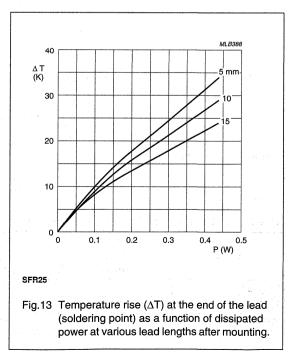
# Standard metal film resistors

# SFR16S/25/25H

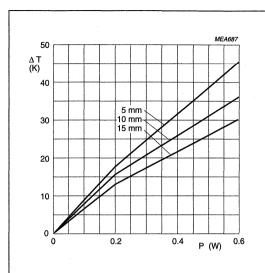




1998 Aug 28 33


# SFR16S/25/25H

#### **Application information**










# SFR16S/25/25H



# SFR25H

Fig.14 Temperature rise (ΔT) at the end of the lead (soldering point) as a function of dissipated power at various lead lengths after mounting.

### **MECHANICAL DATA**

# Mass per 100 units

| TYPE   | MASS<br>(g) |
|--------|-------------|
| SFR16S | 12.5        |
| SFR25  | 25          |

# Marking

The nominal resistance and tolerance are marked on the resistor using four or five coloured bands in accordance with IEC publication 60062 "Colour codes for fixed resistors".

### Outlines

The length of the body  $(L_1)$  is measured by inserting the leads into holes of two identical gauge plates and moving these plates parallel to each other until the resistor body is clamped without deformation ("IEC publication 60294").

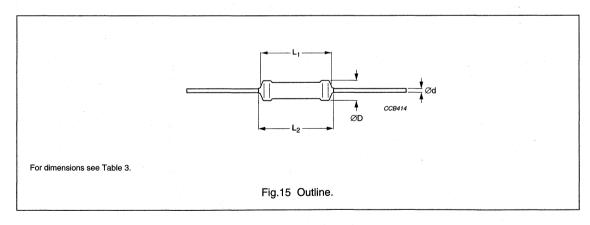



Table 3 Resistor type and relevant physical dimensions; see Fig.15

| TYPE   | ØD<br>MAX.<br>(mm) | L <sub>1</sub><br>MAX.<br>(mm) | L <sub>2</sub><br>MAX.<br>(mm) | Ød<br>(mm) |
|--------|--------------------|--------------------------------|--------------------------------|------------|
| SFR16S | 1.9                | 3.2                            | 3.4                            | 0.45 ±0.05 |
| SFR25  | 2.5                | 6.5                            | 7.0                            | 0.58 ±0.05 |
| SFR25H | 2.5                | 6.5                            | 7.0                            | 0.58 ±0.05 |

# SFR16S/25/25H

# TESTS AND REQUIREMENTS

"IEC publication 60115-1", category 55/155/56 (rated temperature range Essentially all tests are carried out in accordance with the schedule of -55 °C to +155 °C; damp heat, long term, 56 days). The testing also covers the requirements specified by EIA and EIAJ.

procedure for electronic components" and under standard atmospheric "Recommended basic climatic and mechanical robustness testing The tests are carried out in accordance with IEC publication 68, conditions according to "IEC 60068-1", subclause 5.3.

Unless otherwise specified the following values apply: Temperature: 15 °C to 35 °C

Relative humidity: 45% to 75%

Air pressure: 86 kPa to 106 kPa (860 mbar to 1060 mbar).

in Table 4 the tests and requirements are listed with reference to the relevant clauses of "IEC publications 60115-1 and 60068"; a short deviations from the IEC recommendations were necessary for our description of the test procedure is also given. In some instances nethod of specifying.

|   | 2  |
|---|----|
|   |    |
|   | ×  |
|   |    |
|   |    |
|   |    |
|   | .= |
|   | -  |
|   |    |
|   | C  |
|   |    |
|   | 2  |
|   | _  |
|   | C  |
|   | Ċ  |
|   | ~  |
|   | ч  |
|   | "  |
|   | ×  |
|   | u  |
|   |    |
|   |    |
|   | 7  |
|   | ă  |
|   | y  |
|   | c  |
|   | c  |
|   | Ξ  |
|   | c  |
|   |    |
|   | u  |
|   | ď  |
|   | ă  |
| ı | _  |
|   |    |
|   |    |
|   |    |
|   | ♥  |
|   | •  |
|   | a  |
|   | -  |
|   | c  |
| • | 7  |
|   | •  |
|   |    |

| EC                | EC             |                    |                                                        |                     | REQUIREMENTS                                        |
|-------------------|----------------|--------------------|--------------------------------------------------------|---------------------|-----------------------------------------------------|
| 60115-1<br>CLAUSE | TEST<br>METHOD | TEST               | PROCEDURE                                              | RESISTANCE<br>RANGE | SFR16S SFR25 SFR25H                                 |
| 4.16              | )              | robustness of      |                                                        |                     |                                                     |
|                   |                | terminations:      |                                                        |                     |                                                     |
| 4.16.2            | Ua             | tensile all        | Ø0.45 mm, load 5 N; 10 s                               |                     | number of failures $<$ 10 $\times$ 10 <sup>-6</sup> |
|                   |                | samples            | Ø0.58 mm, load 10 N; 10 s                              |                     |                                                     |
| 4.16.3            | a<br>S         | bending half       | $\varnothing 0.45$ mm, load 2.5 N; $4 \times 90^\circ$ |                     | number of failures $<$ 10 $	imes$ 10 <sup>-6</sup>  |
|                   |                | number of samples  | $\varnothing$ 0.58 mm, load 5 N; $4\times90^\circ$     |                     |                                                     |
| 4.16.4            | ട              | torsion other half | $3 \times 360^\circ$ in opposite directions            |                     | no damage                                           |
|                   |                | of samples         |                                                        |                     | $\Delta$ R/R max.: ±0.25% + 0.05 $\Omega$           |
| 4.17              | Та             | solderability      | 2 s; 235 °C; flux 600                                  |                     | good tinning; no damage                             |
| 4.18              | <u>1</u>       | resistance to      | thermal shock: 3 s; 350 °C;                            |                     | ΔR/R max.: ±0.25% + 0.05 Ω                          |
|                   |                | soldering heat     | 6 mm from body                                         |                     |                                                     |
| 4.19              | Na             | rapid change of    | 30 minutes at -55 °C and                               |                     | ΔR/R max.: ±0.25% + 0.05 Ω                          |
|                   |                | temperature        | 30 minutes at +155 °C; 5 cycles                        |                     |                                                     |
| 4.20              | a<br>a         | dwnq               | $3 \times 1500$ bumps in 3 directions;                 |                     | no damage                                           |
|                   |                |                    | 40 g                                                   |                     | $\Delta$ R/R max.: $\pm$ 0.25% + 0.05 $\Omega$      |
| 4.22              | 윤              | vibration          | frequency 10 to 500 Hz;                                |                     | no damage                                           |
|                   |                |                    | displacement 1.5 mm or                                 |                     | ΔR/R max.: ±0.25% + 0.05 Ω                          |
|                   |                |                    | acceleration 10 g; 3 directions;                       |                     |                                                     |
|                   |                |                    | total 6 hours (3 $\times$ 2 hours)                     |                     |                                                     |

# SFR16S/25/25H

| Ē                 | 낊                       |                                   |                                                                                                                  |                     | ac.                     | REQUIREMENTS                                            |                           |
|-------------------|-------------------------|-----------------------------------|------------------------------------------------------------------------------------------------------------------|---------------------|-------------------------|---------------------------------------------------------|---------------------------|
| 60115-1<br>CLAUSE | 60068<br>TEST<br>METHOD | TEST                              | PROCEDURE                                                                                                        | RESISTANCE<br>RANGE | SFR16S                  | SFR25                                                   | SFR25H                    |
| 4.23              |                         | climatic sequence:                |                                                                                                                  |                     | Ä                       | R <sub>ins</sub> min.: 1000 MΩ                          |                           |
| 4.23.2            | Ва                      | dry heat                          | 16 hours; 155 °C                                                                                                 | :                   |                         |                                                         |                           |
| 4.23.3            | O<br>O                  | damp heat                         | 24 hours; 55 °C; 90 to 100% RH                                                                                   |                     |                         |                                                         |                           |
|                   |                         | (accelerated)<br>1st cycle        |                                                                                                                  |                     |                         |                                                         |                           |
| 4.23.4            | Aa                      | ploo                              | 2 hours; -55 °C                                                                                                  |                     |                         |                                                         |                           |
| 4.23.5            | Σ                       | low air pressure                  | 2 hours; 8.5 kPa; 15 to 35 °C                                                                                    |                     |                         |                                                         |                           |
| 4.23.6            | ορ                      | damp heat                         | 5 days; 55 °C; 95 to 100% RH                                                                                     | R ≤ 1 MΩ            | ∆R/R                    | ΔR/R max.: ±1% + 0.05 Ω                                 | 5 Ω                       |
|                   |                         | (accelerated)<br>remaining cycles |                                                                                                                  | R > 1 MΩ            | ΔR/R max.: ±1% + 0.05 Ω | 1% + 0.05 Ω                                             | ΔR/R max.:<br>±2% + 0.1 Ω |
| 4.24.2            | Ca                      | damp heat<br>(steady state)       | 56 days; 40 °C; 90 to 95% RH; dissipation 0.01 P <sub>n</sub>                                                    |                     | R <sub>ir</sub><br>AR/R | R <sub>ins</sub> min.: 1000 MΩ<br>ΔR/R max.: ±1% + 0.05 | 5Ω                        |
| 4.25.1            |                         | endurance                         | 1000 hours at 70 °C;                                                                                             | R ≤ 1 MΩ            | AR/R                    | $\Delta$ R/R max.: ±1% + 0.05 $\Omega$                  | 5 \(\Omega\)              |
| -                 |                         |                                   | P <sub>n</sub> or V <sub>max</sub>                                                                               | R > 1 MΩ            | ΔR/R max.: ±1% + 0.05 Ω | 1% + 0.05 $\Omega$                                      | ΔR/R max.:<br>±2% + 0.1 Ω |
| 4.8.4             |                         | temperature                       | between –55 °C and +155 °C                                                                                       | R < 4.7 \O          | <±250                   | ≥±100                                                   | ≥±100                     |
|                   |                         | coefficient                       | (TC × 10 <sup>-6</sup> /K)                                                                                       | R ≤ 100 kΩ          | ≥±100                   | ≥±100                                                   | ≥±100                     |
|                   |                         |                                   |                                                                                                                  | R ≤ 1 MΩ            | <+250                   | ≥±100                                                   | <±100                     |
|                   |                         |                                   |                                                                                                                  | R > 1 MΩ            | <+250                   | <±250                                                   | <+250                     |
| 4.7               |                         | voltage proof on insulation       | 400 V (RMS) ( <b>SFR16S</b> ) or 600 V (RMS) ( <b>SFR25</b> and <b>SFR25H</b> ); during 1 minute; V-block method |                     |                         | no breakdown                                            |                           |
| 4.12              |                         | noise                             | "IEC publication 60195"                                                                                          | R < 68 kΩ           | max. 0.1 μV/V           | max. 0.1 μV/V                                           | max. 0.1 μV/V             |
|                   |                         |                                   |                                                                                                                  | R ≤ 100 kΩ          | max. 0.5 μV/V           | max. 0.1 μV/V                                           | max. 0.1 μV/V             |
|                   | -                       |                                   |                                                                                                                  | R ≤ 1 MΩ            | max. 1.5 μV/V           | max. 0.1 μV/V                                           | max. 0.1 μV/V             |
|                   |                         |                                   |                                                                                                                  | R > 1 MΩ            | max. 1.5 μV/V           | max. 1.5 μV/V                                           | max. 1.5 μV/V             |
| 4.6.1.1           |                         | insulation<br>resistance          | 500 V (DC) during 1 minute;<br>V-block method                                                                    |                     |                         | R <sub>ins</sub> min.: 1000 ΜΩ                          |                           |

# SFR16S/25/25H

| EC                            |                |                     |                                               |                     | B                         | REQUIREMENTS                 |            |
|-------------------------------|----------------|---------------------|-----------------------------------------------|---------------------|---------------------------|------------------------------|------------|
| 60115-1<br>CLAUSE             | TEST<br>METHOD | TEST                | PROCEDURE                                     | HESISTANCE<br>RANGE | SFR16S                    | SFR25                        | SFR25H     |
| 4.13                          |                | short time overload | room temperature;                             |                     | ΔR/R max: ±0.25% + 0.05 Ω | 25% + 0.05 Ω                 | ∆R/R max.: |
|                               |                |                     | 6.25 × 0.25 W (SFR16S);                       |                     |                           |                              | 7          |
|                               |                |                     | 5 s on, 45 s off $(V \le 2 \times V_{max})$ ; |                     |                           |                              |            |
|                               |                |                     | 10 cycles                                     |                     |                           |                              |            |
|                               |                | intermittent        | 16 × 0.16 W; 1 s on and 25 s off;             |                     | ΔR/R max.:                |                              |            |
|                               |                | overload in         | 10000 ±200 cycles;                            |                     | ±0.75% + 0.05 Ω           |                              |            |
|                               |                | accordance with     | $V_{max} = 600 \text{ V}$                     |                     | -                         |                              |            |
|                               |                | "JIS-C5202 5.8"     |                                               |                     |                           |                              |            |
| see 2 <sup>nd</sup> amendment | endment        | pulse load          |                                               |                     | see Fig                   | see Figs 4, 5, 6, 7, 8 and 9 | 6 pu       |
| to "IEC 601                   | 115-1",        | . *                 |                                               |                     |                           |                              |            |
| Jan. '87                      |                |                     |                                               |                     |                           |                              |            |
|                               |                |                     |                                               |                     |                           |                              |            |

# MRS16S/25

# **FEATURES**

- · Precision resistors in small outlines
- · Low noise.

### **APPLICATIONS**

• All general purpose applications.

### DESCRIPTION

A homogeneous film of metal alloy is deposited on a high grade ceramic body. After a helical groove has been cut in the resistive layer, tinned connecting wires of electrolytic copper are welded to the end-caps.

The resistors are coated with a green lacquer which provides electrical, mechanical, and climatic protection. The encapsulation is resistant to all cleaning solvents in accordance with "MIL-STD-202E, method 215", and "IEC 60068-2-45".

# **QUICK REFERENCE DATA**

| DECORPTION                                      | VAI                                          | UE                                           |
|-------------------------------------------------|----------------------------------------------|----------------------------------------------|
| DESCRIPTION                                     | MRS16S                                       | MRS25                                        |
| Resistance range                                | 4.99 Ω to 1 MΩ                               | 1 Ω to 10 MΩ                                 |
| Resistance tolerance and series                 | ±1%; E24/                                    | E96 series                                   |
| Maximum dissipation at T <sub>amb</sub> = 70 °C | 0.4 W                                        | 0.6 W                                        |
| Thermal resistance (R <sub>th</sub> )           | 170 K/W                                      | 150 K/W                                      |
| Temperature coefficient                         | ≤±50 ×                                       | 10 <sup>-6</sup> /K                          |
| Maximum permissible voltage (DC or RMS)         | 200 V                                        | 350 V                                        |
| Basic specifications                            | IEC 60115-1                                  | and 60115-2                                  |
| Climatic category (IEC 60068)                   | 55/19                                        | 55/56                                        |
| Stability after:                                |                                              |                                              |
| load:                                           |                                              |                                              |
| R ≤ 100 kΩ                                      | $\Delta$ R/R max.: ±0.5% + 0.05 Ω            | $\Delta$ R/R max.: $\pm 0.5\% + 0.05 \Omega$ |
| $R > 100 \text{ k}\Omega$                       | $\Delta$ R/R max.: ±1% + 0.05 $\Omega$       | $\Delta$ R/R max.: $\pm 0.5\% + 0.05 \Omega$ |
| climatic tests:                                 |                                              |                                              |
| R ≤ 100 kΩ                                      | $\Delta$ R/R max.: $\pm 0.5\% + 0.05 \Omega$ | $\Delta$ R/R max.: ±0.5% + 0.05 $\Omega$     |
| R > 100 kΩ                                      | $\Delta$ R/R max.: ±1% + 0.05 $\Omega$       | $\Delta$ R/R max.: $\pm 0.5\% + 0.05 \Omega$ |
| soldering:                                      |                                              |                                              |
| R ≤ 100 kΩ                                      | ΔR/R max.: ±0.1% + 0.05 Ω                    | ΔR/R max.: ±0.1% + 0.05 Ω                    |
| R > 100 kΩ                                      | $\Delta$ R/R max.: ±0.25% + 0.05 Ω           | $\Delta$ R/R max.: ±0.1% + 0.05 Ω            |
| short time overload                             | $\Delta$ R/R max.: ±0.25% + 0.05 Ω           | $\Delta$ R/R max.: ±0.25% + 0.05 Ω           |

MRS16S/25

### ORDERING INFORMATION

Table 1 Ordering code indicating resistor type and packaging

| a particular de la companya del companya del companya de la compan |             | ORDERING CODE 2322 15 | 5          |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-----------------------|------------|
| TYPE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | BANDOLIER I | BANDOLIER ON REEL     |            |
| The state of the s | 1000 units  | 5000 units            | 5000 units |
| MRS16S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | · 71        | 7 2                   | 7 3        |
| MRS25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6 1         | 6 2                   | 6 3        |

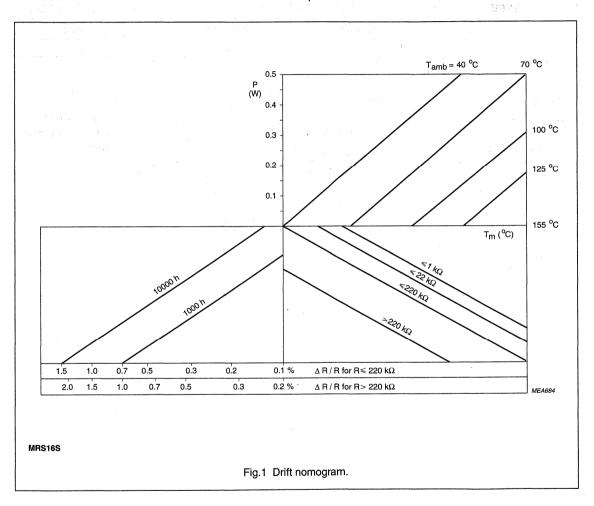
# Ordering code (12NC)

- The resistors have a 12-digit ordering code starting with 2322 15
- The subsequent 2 digits indicate the resistor type and packaging; see Table 1.
- The remaining 4 digits indicate the resistance value:
  - The first 3 digits indicate the resistance value.
  - The last digit indicates the resistance decade in accordance with Table 2.

# Table 2 Last digit of 12NC

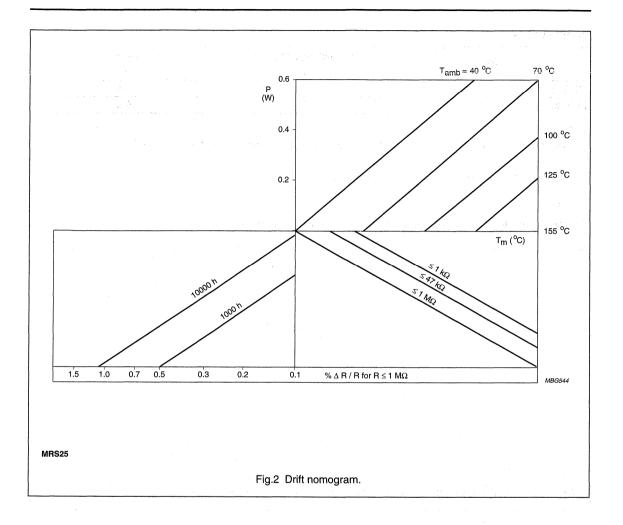
| RESISTANCE<br>DECADE | LAST DIGIT |
|----------------------|------------|
| 1 to 9.76 Ω          | 8          |
| 10 to 97.6 Ω         | 9          |
| 100 to 976 Ω         | 1          |
| 1 to 9.76 kΩ         | . 2        |
| 10 to 97.6 kΩ        | 3          |
| 100 to 976 kΩ        | 4          |
| 1 to 9.76 MΩ         | 5          |
| 10 MΩ                | 6          |

### **ORDERING EXAMPLE**


The ordering code of a MRS16S resistor, value 750  $\Omega$ , on a bandolier of 1000 units in ammopack is: 2322 157 17501.

MRS16S/25

# **FUNCTIONAL DESCRIPTION**


### **Product characterization**

Standard values of nominal resistance are taken from the E24/E96 series for resistors with a tolerance of  $\pm 1\%$ . The values of the E24/E96 series are in accordance with "IEC publication 60063".



Philips Components Product specification

# Metal film resistors MRS16S/25



MRS16S/25

# Limiting values

| ТҮРЕ   | LIMITING VOLTAGE <sup>(1)</sup> (V) | LIMITING POWER<br>(W) |
|--------|-------------------------------------|-----------------------|
| MRS16S | 200                                 | 0.4                   |
| MRS25  | 350                                 | 0.6                   |

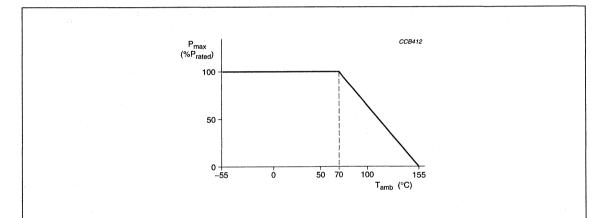
### Note

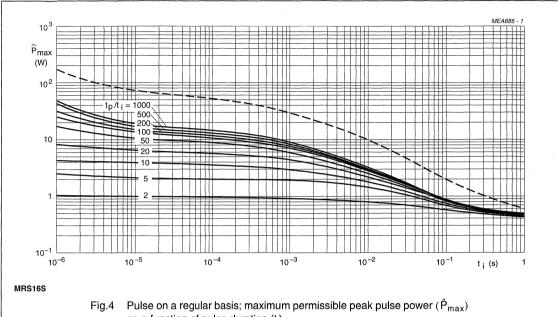
1. The maximum voltage that may be continuously applied to the resistor element, see "IEC publication 60115-1".

The maximum permissible hot-spot temperature is 155 °C.

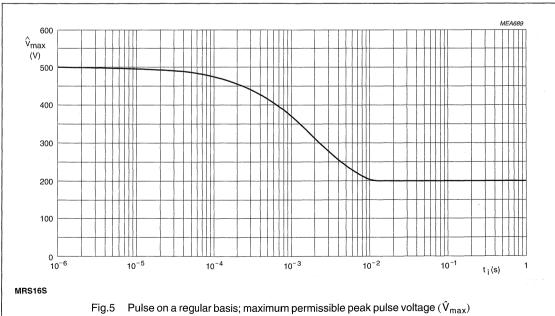
# **DERATING**

The power that the resistor can dissipate depends on the operating temperature; see Fig.3.





Fig.3 Maximum dissipation ( $P_{max}$ ) in percentage of rated power as a function of the ambient temperature ( $T_{amb}$ ).

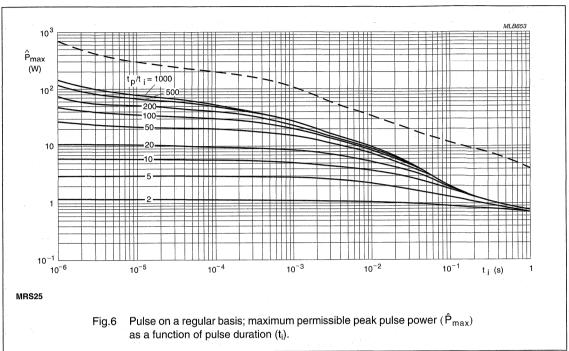
Product specification Philips Components


# Metal film resistors

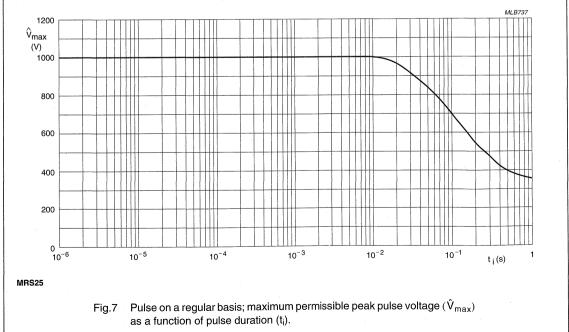
MRS16S/25

### PULSE LOADING CAPABILITIES




as a function of pulse duration (ti).




as a function of pulse duration (ti).

Philips Components Product specification

# Metal film resistors MRS16S/25



as a function of pulse duration (t<sub>i</sub>).



1998 Aug 28 45

Philips Components Product specification

# Metal film resistors

# MRS16S/25

# **Application information**

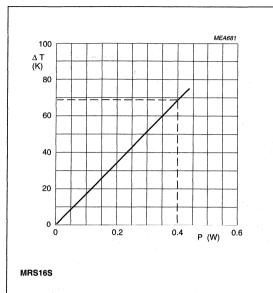



Fig.8 Hot-spot temperature rise ( $\Delta T$ ) as a function of dissipated power.

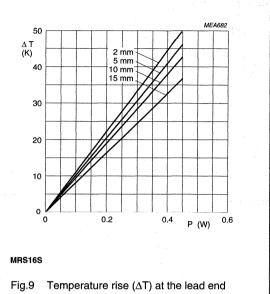



Fig.9 Temperature rise (ΔT) at the lead end (soldering point) as a function of dissipated power at various lead lengths after mounting.

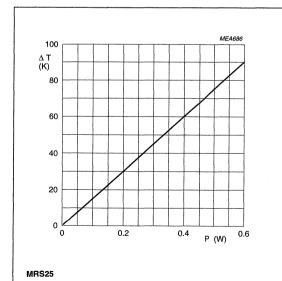



Fig.10 Hot-spot temperature rise ( $\Delta T$ ) as a function of dissipated power.

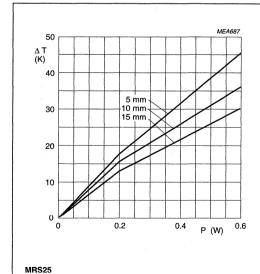



Fig.11 Temperature rise (ΔT) at the lead end (soldering point) as a function of dissipated power at various lead lengths after mounting.

# MRS16S/25

### **MECHANICAL DATA**

# Mass per 100 units

| TYPE   | MASS<br>(g) |
|--------|-------------|
| MRS16S | 11          |
| MRS25  | 25          |

# Marking

The nominal resistance and tolerance are marked on the resistor using five coloured bands in accordance with IEC publication 60062 "Colour codes for fixed resistors".

### **Outlines**

The length of the body (L<sub>1</sub>) is measured by inserting the leads into holes of two identical gauge plates and moving these plates parallel to each other until the resistor body is clamped without deformation ("IEC publication 60294").

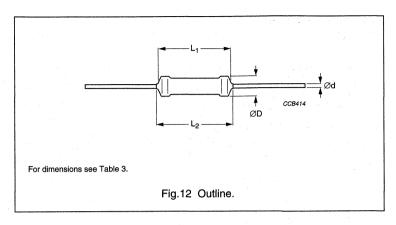



Table 3 Resistor type and relevant physical dimensions; see Fig.12

| TYPE   | ØD<br>MAX.<br>(mm) | L <sub>1</sub><br>TYP.<br>(mm) | L <sub>2</sub><br>MAX.<br>(mm) | Ød<br>(mm) |
|--------|--------------------|--------------------------------|--------------------------------|------------|
| MRS16S | 1.9                | 3.2                            | 3.4                            | 0.45 ±0.05 |
| MRS25  | 2.5                | 6.5                            | 7.0                            | 0.58 ±0.05 |

MRS16S/25

### **TESTS AND REQUIREMENTS**

Essentially all tests are carried out in accordance with the schedule of "IEC publication 60115-1", category LCT/UCT/56 (rated temperature range: Lower Category Temperature, Upper Category Temperature; damp heat, long term, 56 days). The testing also covers the requirements specified by EIA and EIAJ.

The tests are carried out in accordance with IEC publication 60068, "Recommended basic climatic and mechanical robustness testing procedure for electronic components" and under standard atmospheric conditions according to "IEC 60068-1", subclause 5.3.

Unless otherwise specified the following values apply:

Temperature: 15 °C to 35 °C Relative humidity: 45% to 75% Air pressure: 86 kPa to 106 kPa (860 mbar to 1060 mbar).

In Table 4 the tests and requirements are listed with reference to the relevant clauses of "IEC publications 60115-1 and 60068", a short description of the test procedure is also given. In some instances deviations from the IEC recommendations were necessary for our method of specifying.

All soldering tests are performed with mildly activated flux.

Table 4 Test procedures and requirements

| JEC                                  | IEC        |                             |                                                                            | REQUIR                     | EMENTS            |
|--------------------------------------|------------|-----------------------------|----------------------------------------------------------------------------|----------------------------|-------------------|
| 60115-1 CLAUSE METHOD TEST PROCEDURE | PROCEDURE  | MRS16S                      | MRS25                                                                      |                            |                   |
| Tests in ac                          | cordance v | vith the schedule of IE     | C publication 60115-1                                                      | A Charles Sales            |                   |
| 4.4.1                                |            | visual examination          |                                                                            | no holes; clean su         | ırface; no damage |
| 4.4.2                                |            | dimensions (outline)        | gauge (mm)                                                                 | see Ta                     | able 3            |
| 4.5                                  |            | resistance                  | applied voltage (+0/-10%):                                                 | R – R <sub>nom</sub> :     | max. ±1%          |
|                                      |            |                             | R < 10 Ω: 0.1 V                                                            |                            | 7 · 4 · - 4       |
|                                      |            |                             | 10 Ω ≤ R < 100 Ω: 0.3 V                                                    |                            | ·                 |
|                                      |            |                             | 100 Ω ≤ R < 1 kΩ: 1 V                                                      |                            |                   |
|                                      |            | w <sup>*</sup>              | 1 kΩ ≤ R < 10 kΩ: 3 V                                                      |                            |                   |
|                                      |            |                             | 10 kΩ ≤ R < 100 kΩ: 10 V                                                   |                            | 1                 |
|                                      |            |                             | 100 kΩ ≤ R < 1 MΩ: 25 V                                                    |                            |                   |
|                                      |            |                             | 1 MΩ ≤ R: 50 V                                                             |                            |                   |
| 4.18                                 | Tb         | resistance to               | thermal shock: 3 s; 350 °C;                                                | e 2 4 .                    | 1                 |
|                                      |            | soldering heat              | 6 mm from body:                                                            | ere ville i diff           | er er er er er er |
|                                      |            |                             | R ≤ 100 kΩ                                                                 | ΔR/R max.: ±0              | 0.1% + 0.05 Ω     |
|                                      |            |                             | R > 100 kΩ                                                                 | ΔR/R max.:                 | ΔR/R max.:        |
|                                      |            |                             |                                                                            | $\pm 0.25\% + 0.05 \Omega$ |                   |
| 4.29                                 | 45 (Xa)    | component solvent           | isopropyl alcohol or H <sub>2</sub> O                                      | no visual                  | damage            |
|                                      |            | resistance                  | followed by brushing in accordance with "MIL 202 F"                        |                            | :<br>-<br>-       |
| 4.17                                 | Ta         | solderability               | 2 s; 235 °C                                                                | good tinning               | ; no damage       |
| 4.7                                  |            | voltage proof on insulation | voltage (RMS) during 1 minute,<br>metal block method:<br>400 V for MRS16S, | no breakdow                | n or flashover    |
|                                      |            |                             | 700 V for <b>MRS25</b>                                                     |                            |                   |

# MRS16S/25

| IEC               | IEC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                      |                                                                                                                                                       | REQUIR                                  | EMENTS                                       |
|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|----------------------------------------------|
| 60115-1<br>CLAUSE | 60068-2<br>TEST<br>METHOD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | TEST                                                 | PROCEDURE                                                                                                                                             | MRS16S                                  | MRS25                                        |
| 4.13              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | short time overload                                  | room temperature;<br>$P = 6.25 \times P_n$ (MRS25) or<br>$6.25 \times 0.25$ W (MRS16S);<br>5 s on 45 s off, 10 cycles<br>( $V \le 2 \times V_{max}$ ) | ΔR/R max.: ±0                           | .25% + 0.05 Ω                                |
| 4.16              | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | robustness of terminations:                          |                                                                                                                                                       |                                         |                                              |
| 4.16.2            | Ua                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | tensile all samples                                  | Ø0.45 mm, load 5 N; 10 s<br>Ø0.58 mm, load 10 N; 10 s                                                                                                 | number of fail                          | ures <10 × 10 <sup>-6</sup>                  |
| 4.16.3            | Ub                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | bending half<br>number of samples                    | $\varnothing$ 0.45 mm, load 2.5 N; 4 × 90° $\varnothing$ 0.58 mm, load 5 N; 4 × 90°                                                                   | number of fail                          | ures <10 × 10 <sup>−6</sup>                  |
| 4.16.4            | Uc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | torsion other half of samples                        | 3 × 360° in opposite directions                                                                                                                       |                                         | ımage<br>0.1% + 0.05 Ω                       |
| 4.20              | Eb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | bump                                                 | 3 × 1500 bumps in<br>3 directions; 40 g                                                                                                               |                                         | mage<br>0.1% + 0.05 Ω                        |
| 4.22              | Fc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | vibration                                            | frequency 10 to 500 Hz;<br>displacement 1.5 mm or<br>acceleration 10 g; 3 directions;<br>total 6 hours (3 × 2 hours)                                  | 1                                       | lmage<br>0.1% + 0.05 Ω                       |
| 4.19              | 14 (Na)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | rapid change of temperature                          | 30 minutes at LCT and<br>30 minutes at UCT; 5 cycles:<br>R ≤ 100 kΩ                                                                                   |                                         | l damage<br>0.1% + 0.05 Ω                    |
|                   | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                      | R > 100 kΩ                                                                                                                                            | $\Delta$ R/R max.: ±0.25% + 0.05 Ω      | $\Delta$ R/R max.: ±0.1% + 0.05 Ω            |
| 4.23<br>4.23.3    | 30 (D)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | climatic sequence: damp heat (accelerated) 1st cycle |                                                                                                                                                       |                                         |                                              |
| 4.23.6            | 30 (D)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | damp heat<br>(accelerated)                           | 6 days; 55 °C; 95 to 98% RH:<br>R ≤ 100 kΩ                                                                                                            |                                         | : 10 <sup>3</sup> MΩ<br>0.5% + 0.05 Ω        |
|                   | Teach Control of the | remaining cycles                                     | R > 100 kΩ                                                                                                                                            | ΔR/R max.:<br>±1% + 0.05 Ω              | $\Delta$ R/R max.: $\pm 0.5\% + 0.05 \Omega$ |
| 4.24.2            | 3 (Ca)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | damp heat<br>(steady state)<br>(IEC)                 | 56 days; 40 °C; 90 to 95% RH; loaded with 0.01 P <sub>n</sub> (IEC steps: 4 to 100 V):                                                                |                                         |                                              |
|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                      | R ≤ 100 kΩ<br>R > 100 kΩ                                                                                                                              | $\Delta$ R/R max.: ± $\Delta$ R/R max.: | 0.5% + 0.05 Ω<br>ΔR/R max.:                  |
|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                      |                                                                                                                                                       | ±1% + 0.05 Ω                            | $\pm 0.5\% + 0.05 \Omega$                    |

# MRS16S/25

| IEC                                              | IEC                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                            | REQUIR                                                       | EMENTS                                                     |
|--------------------------------------------------|---------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|------------------------------------------------------------|
| 60115-1<br>CLAUSE                                | 60068-2<br>TEST<br>METHOD | TEST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | PROCEDURE                                                                                                  | MRS16S                                                       | MRS25                                                      |
| 4.25.1                                           |                           | endurance (at 70 °C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1000 hours;<br>loaded with P <sub>n</sub> or V <sub>max</sub> ;<br>1.5 hours on and 0.5 hours off:         |                                                              |                                                            |
|                                                  |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | R ≤ 100 kΩ                                                                                                 | ΔR/R max.: ±6                                                | $0.5\% + 0.05 \Omega$                                      |
|                                                  |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | R > 100 kΩ                                                                                                 | $\Delta$ R/R max.: $\pm$ 1% + 0.05 $\Omega$                  | $\Delta$ R/R max.: ±0.5% + 0.05 Ω                          |
| 4.23.2                                           | 27 (Ba)                   | endurance at upper<br>category temperature                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1 000 hours; no load:<br>R $\leq$ 100 kΩ<br>R > 100 kΩ                                                     | $\Delta$ R/R max.: ±0 $\Delta$ R/R max.: ±1% + 0.05 $\Omega$ | $0.5\% + 0.05 \Omega$ ΔR/R max.: $\pm 0.5\% + 0.05 \Omega$ |
| 4.8.4.2                                          |                           | temperature coefficient                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | at 20/LCT/20 °C and 20/UCT/20 °C (TC × 10 <sup>-6</sup> /K)                                                |                                                              | 10 <sup>-6</sup> /K                                        |
| Other tests                                      | s in accorda              | ance with IEC 60115 cl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | auses and IEC 60068 test meth                                                                              | od                                                           |                                                            |
| 4.17                                             | 20 (Tb)                   | solderability<br>(after ageing)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8 hours steam or 16 hours 155 °C; leads immersed 6 mm for 2 $\pm$ 0.5 s in a solder bath at 235 $\pm$ 5 °C |                                                              | :95% covered);<br>image                                    |
| 4.6.1.1                                          |                           | insulation resistance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | voltage (DC) after 1 minute,<br>metal block method:<br>100 V for MRS16S,<br>500 V for MRS25                | R <sub>ins</sub> min.                                        | : 10 <sup>4</sup> MΩ                                       |
| 4.12                                             |                           | noise                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | "IEC publication 60195"<br>(measured with<br>Quantech-equipment):                                          |                                                              |                                                            |
| ·                                                | ·                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | R ≤ 68 kΩ                                                                                                  | max. 0.1 μV/V                                                | max. 0.1 μV/V                                              |
|                                                  |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | R ≤ 100 kΩ                                                                                                 | max. 0.5 μV/V                                                | max. 0.1 μV/V                                              |
|                                                  |                           | in the second se | R≤1 MΩ                                                                                                     | max. 1.5 μV/V                                                | max. 0.1 μV/V                                              |
|                                                  |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | R > 1 MΩ                                                                                                   | max. 1.5 μV/V                                                | max. 1.5 μV/V                                              |
| see 2 <sup>nd</sup> am<br>to "IEC 601<br>Jan.'87 |                           | pulse load                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                            | see Figs 4 and 5                                             | see Figs 6 and 7                                           |

### **FEATURES**

- Overload protection without risk of fire
- · Wide range of overload currents.

### **APPLICATIONS**

- Audio
- · Video.

### DESCRIPTION

A homogeneous film of metal alloy is deposited on a high grade ceramic body. After a helical groove has been cut in the resistive layer, tinned connecting wires of electrolytic copper are welded to the end-caps. The resistors are coated with a grey, flame retardant lacquer which provides electrical, mechanical, and climatic protection. The encapsulation is resistant to all cleaning solvents in accordance with "MIL-STD-202E, method 215", and "IEC 60068-2-45"..

# ORDERING INFORMATION Ordering code (12NC)

- The resistors have a 12-digit ordering code starting with 23
- The subsequent 7 digits indicate the resistor type and packaging; see Table 1.
- The remaining 3 digits indicate the resistance values:
  - The first 2 digits indicate the resistance value.
  - The last digit indicates the resistance decade in accordance with Table 2.

### QUICK REFERENCE DATA

| DESCRIPTION                                     | VAL                                      | UE 7                        |  |
|-------------------------------------------------|------------------------------------------|-----------------------------|--|
| DESCRIPTION                                     | NFR25                                    | NFR25H                      |  |
| Resistance range                                | 1 Ω to                                   | 15 kΩ                       |  |
| Resistance tolerance and series                 | ±5%; E2                                  | 4 series                    |  |
| Maximum dissipation at T <sub>amb</sub> = 70 °C | 0.33 W                                   | 0.5 W                       |  |
| Thermal resistance (R <sub>th</sub> )           | 240 K/W                                  | 150 K/W                     |  |
| Temperature coefficient:                        |                                          |                             |  |
| $1 \Omega \le R \le 4.7 \Omega$                 | ≤±200 × 10 <sup>-6</sup> /K              | ≤±200 × 10 <sup>-6</sup> /K |  |
| $4.7 \Omega < R \le 15 \Omega$                  | ≤±200 × 10 <sup>-6</sup> /K              | ≤±100 × 10 <sup>-6</sup> /K |  |
| 15 Ω < R ≤ 15 kΩ                                | $\leq \pm 100 \times 10^{-6} / \text{K}$ | ≤±100 × 10 <sup>-6</sup> /K |  |
| Maximum permissible voltage (DC or RMS)         | 250 V                                    | 350 V                       |  |
| Basic specifications                            | IEC 60115-1                              | and 60115-2                 |  |
| Climatic category (IEC 60068)                   | 55/155/56                                |                             |  |
| Stability after:                                |                                          |                             |  |
| load                                            | $\Delta$ R/R max.: ±1% + 0.05 $\Omega$   |                             |  |
| climatic tests                                  | $\Delta$ R/R max.: ±1% + 0.05 $\Omega$   |                             |  |
| soldering                                       | $\Delta$ R/R max.: ±0.25% + 0.05 Ω       |                             |  |

Table 1 Ordering code indicating resistor type and packaging

|        |                 | ORDERING C     | ODE 23               |                   |
|--------|-----------------|----------------|----------------------|-------------------|
|        | BAND            | OLIER IN AMMO  | BANDOLIER<br>ON REEL |                   |
| TYPE   | RADIAL<br>TAPED | STRAIGHT LEADS |                      | STRAIGHT<br>LEADS |
|        | 4000 units      | 1000 units     | 5000 units           | 5000 units        |
| NFR25  | 06 204 03       | 22 205 13      | 22 205 33            | 22 205 23         |
| NFR25H | 06 207 03       | 22 207 13      | 22 207 33            | 22 207 23         |

Table 2 Last digit of 12NC

| RESISTANCE<br>DECADE | LAST DIGIT |
|----------------------|------------|
| 1 to 9.1 Ω ,         | 8          |
| 10 to 91 Ω           | 9          |
| 100 to 910 Ω         | 1          |
| 1 to 9.1 kΩ          | 2          |
| 10 to 15 kΩ          | 3          |

### ORDERING EXAMPLE

The ordering code for a NFR25 resistor with value 750  $\Omega$ , supplied on a bandolier of 1000 units in ammopack is: 2322 205 13751.

# Fusible resistors

NFR25/25H

### **FUNCTIONAL DESCRIPTION**

### **Product characterization**

Standard values of nominal resistance are taken from the E24 series for resistors with a tolerance of  $\pm 5\%$ . The values of the E24 series are in accordance with "IEC publication 60063".

# Limiting values

| ТҮРЕ   | LIMITING VOLTAGE <sup>(1)</sup> (V) | LIMITING POWER<br>(W) |
|--------|-------------------------------------|-----------------------|
| NFR25  | 250                                 | 0.33                  |
| NFR25H | 350                                 | 0.5                   |

# Note

1. The maximum voltage that may be continuously applied to the resistor element, see "IEC publication 60115-1".

The maximum permissible hot-spot temperature is 155 °C.

### **DERATING**

The power that the resistor can dissipate depends on the operating temperature; see Fig.1.

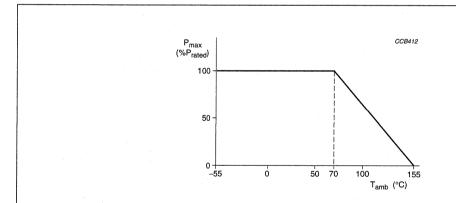
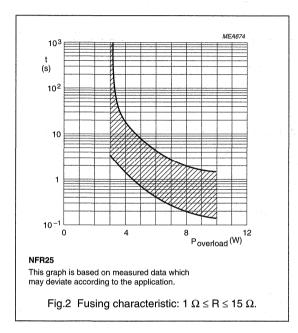
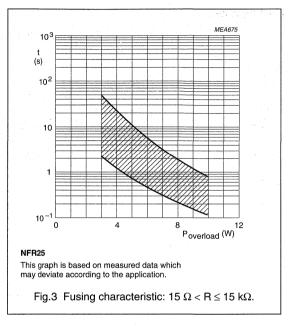
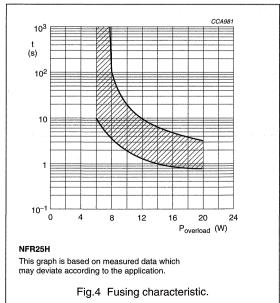



Fig.1 Maximum dissipation (P<sub>max</sub>) in percentage of rated power as a function of the ambient temperature (T<sub>amb</sub>).

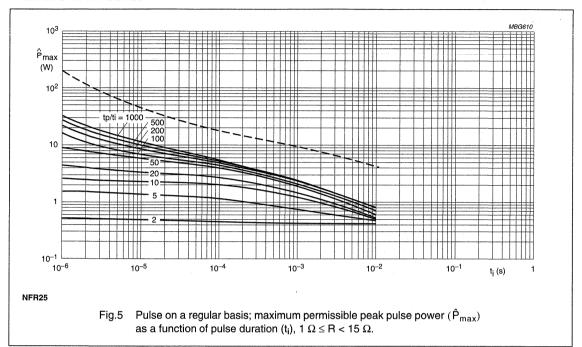

**Philips Components** 

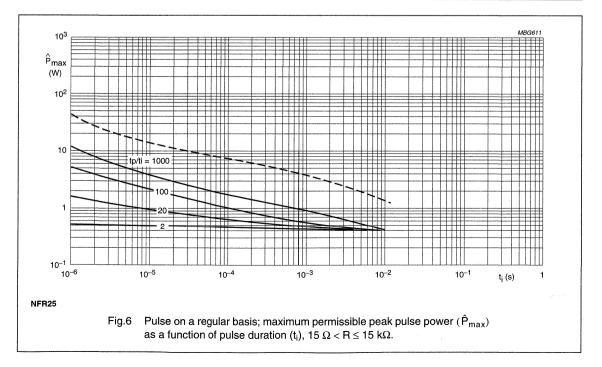

# Fusible resistors NFR25/25H


### FUSING CHARACTERISTIC

The resistors will fuse without the risk of fire and within an indicated range of overload. Fusing means that the resistive value of the resistor increases at least 100 times; see Figs 2, 3 and 4.

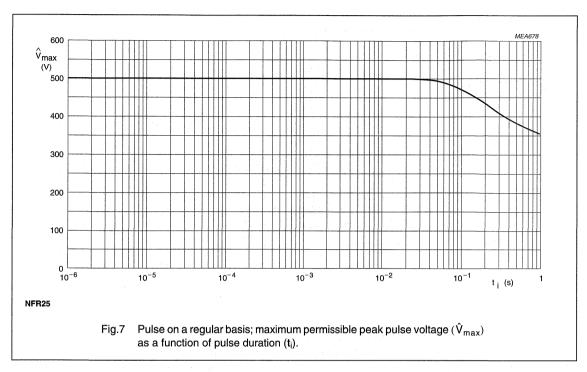
The fusing characteristic is measured under constant voltage.

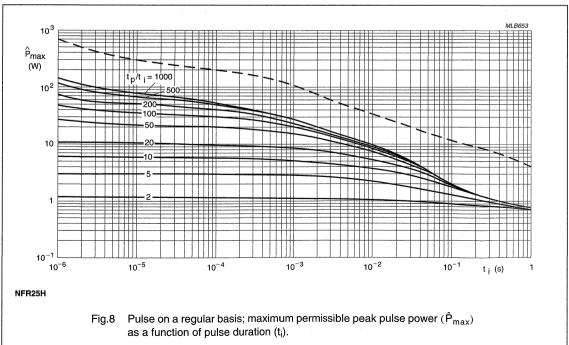


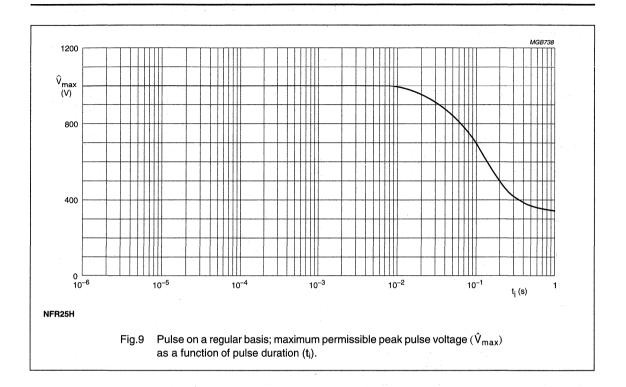



1998 Aug 28 53


### PULSE LOADING CAPABILITIES







Philips Components Product specification

# Fusible resistors NFR25/25H





1998 Aug 28 55



# **Application information**

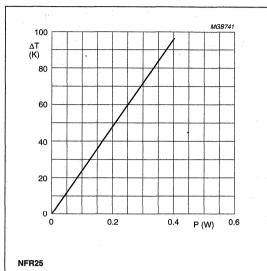



Fig.10 Hot-spot temperature rise ( $\Delta T$ ) as a function of dissipated power.

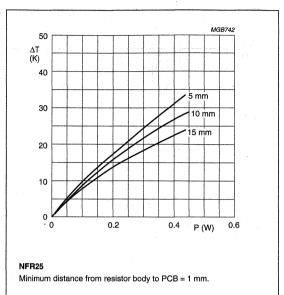



Fig.11 Temperature rise (ΔT) at the lead end (soldering point) as a function of dissipated power at various lead lengths after mounting.

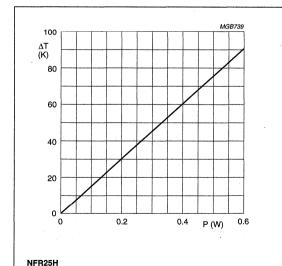
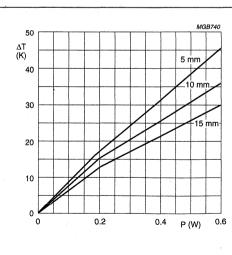




Fig.12 Hot-spot temperature rise ( $\Delta T$ ) as a function of dissipated power.



### NER25H

Minimum distance from resistor body to PCB = 1 mm.

Fig.13 Temperature rise ( $\Delta T$ ) at the lead end (soldering point) as a function of dissipated power at various lead lengths after mounting.

### **MECHANICAL DATA**

### Mass per 100 units

| TYPE   | MASS<br>(g) |
|--------|-------------|
| NFR25  | 25          |
| NFR25H | 25,         |

# Marking

The nominal resistance and tolerance are marked on the resistor using four coloured bands in accordance with IEC publication 60062 "Colour codes for fixed resistors".

For ease of recognition a fifth ring is added, which is violet for type NFR25 and white for type NFR25H.

# **Outlines**

The length of the body (L<sub>1</sub>) is measured by inserting the leads into holes of two identical gauge plates and moving these plates parallel to each other until the resistor body is clamped without deformation ("IEC publication 60294").

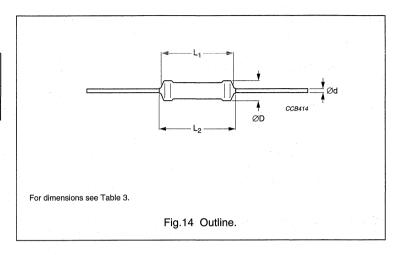



Table 3 Resistor type and relevant physical dimensions; see Fig.14

| TYPE   | ØD<br>MAX.<br>(mm) | L <sub>1</sub><br>MAX.<br>(mm) | L <sub>2</sub><br>MAX.<br>(mm) | Ød<br>(mm) |
|--------|--------------------|--------------------------------|--------------------------------|------------|
| NFR25  | 2.5                | 6.5                            | 7.5                            | 0.58 ±0.05 |
| NFR25H | 2.5                | 0.5                            | 7.5                            | 0.56 ±0.05 |

# **Fusible resistors**

# NFR25/25H

# **TESTS AND REQUIREMENTS**

Essentially all tests are carried out in accordance with the schedule of "IEC publication 60115-1", category LCT/UCT/56 (rated temperature range: Lower Category Temperature, Upper Category Temperature; damp heat, long term, 56 days). The testing also covers the requirements specified by EIA and EIAJ.

The tests are carried out in accordance with IEC publication 60068, "Recommended basic climatic and mechanical robustness testing procedure for electronic components" and under standard atmospheric conditions according to "IEC 60068-1", subclause 5.3.

Unless otherwise specified the following values apply:

Temperature: 15 °C to 35 °C Relative humidity: 45% to 75% Air pressure: 86 kPa to 106 kPa.

In Table 4 the tests and requirements are listed with reference to the relevant clauses of "IEC publications 60115-1 and 60068", a short description of the test procedure is also given. In some instances deviations from the IEC recommendations were necessary for our method of specifying. For inflammability requirements reference is made to "IEC 60115-1" and to "EN 140000, appendix D".

All soldering tests are performed with mildly activated flux.

Table 4 Test procedures and requirements

| IEC               | IEC                       |                                   |                                                                                                 | REQUIRE                             | MENTS                     |
|-------------------|---------------------------|-----------------------------------|-------------------------------------------------------------------------------------------------|-------------------------------------|---------------------------|
| 60115-1<br>CLAUSE | 60068-2<br>TEST<br>METHOD | TEST                              | PROCEDURE                                                                                       | NFR25                               | NFR25H                    |
| Tests in a        | ccordance                 | with the schedule of I            | EC publication 60115-8                                                                          |                                     |                           |
| 4.4.1             |                           | visual examination                |                                                                                                 | no holes; clean su                  | face; no damage           |
| 4.4.2             |                           | dimensions (outline)              | gauge (mm)                                                                                      | see Ta                              | ble 3                     |
| 4.5               |                           | resistance                        | applied voltage (+0/–10%):<br>$R < 10 \Omega$ : 0.1 V<br>$10 \Omega \le R < 100 \Omega$ : 0.3 V | R – R <sub>nom</sub> . ı            | max. ±5%                  |
|                   |                           |                                   | 100 Ω ≤ H < 1 kΩ: 1 V<br>1 kΩ ≤ R < 10 kΩ: 3 V<br>10 kΩ ≤ R ≤ 15 kΩ: 10 V                       |                                     |                           |
| 4.18              | Tb                        | resistance to soldering heat      | thermal shock: 3 s; 350 °C;<br>6 mm from body                                                   | ΔR/R max.: ±0.                      | 25% + 0.05 Ω              |
| 4.29              | 45 (Xa)                   | component solvent resistance      | isopropyl alcohol or H <sub>2</sub> O followed by brushing in accordance with "MIL 202 F"       | no visual                           | damage                    |
| 4.17              | Та                        | solderability                     | 2 s; 235 °C                                                                                     | good tinning;                       | no damage                 |
| 4.7               |                           | voltage proof on insulation       | 2 × maximum voltage (RMS)<br>during 1 minute;<br>metal block method                             | no breakdown                        | or flashover              |
| 4.16              | U                         | robustness of terminations:       |                                                                                                 |                                     |                           |
| 4.16.2            | Ua                        | tensile all samples               | load 10 N; 10 s                                                                                 | number of failur                    | es <10 × 10 <sup>-6</sup> |
| 4.16.3            | Ub                        | bending half<br>number of samples | load 5 N; 4 × 90°                                                                               | number of failur                    | es <10 × 10 <sup>-6</sup> |
| 4.16.4            | Uc                        | torsion other half of samples     | 3 × 360° in opposite directions                                                                 | no dar $\Delta R/R$ max.: $\pm 0$ . | -                         |

| IEC                                              | IEC                       |                                                     |                                                                                                                      | REQUIR                      | EMENTS                                   |
|--------------------------------------------------|---------------------------|-----------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|-----------------------------|------------------------------------------|
| 60115-1<br>CLAUSE                                | 60068-2<br>TEST<br>METHOD | TEST                                                | PROCEDURE                                                                                                            | NFR25                       | NFR25H                                   |
| 4.20                                             | Eb                        | bump                                                | $3 \times 1500$ bumps in 3 directions; 40 g                                                                          |                             | lmage<br>0.25% + 0.05 Ω                  |
| 4.22                                             | Fc                        | vibration                                           | frequency 10 to 500 Hz;<br>displacement 1.5 mm or<br>acceleration 10 g; 3 directions;<br>total 6 hours (3 × 2 hours) |                             | mage<br>0.25% + 0.05 Ω                   |
| 4.19                                             | 14 (Na)                   | rapid change of temperature                         | 30 minutes at LCT and<br>30 minutes at UCT; 5 cycles                                                                 |                             | l damage<br>0.25% + 0.05 Ω               |
| 4.23                                             |                           | climatic sequence:                                  | 1                                                                                                                    |                             |                                          |
| 4.23.3                                           | 30 (D)                    | damp heat<br>(accelerated)<br>1 <sup>st</sup> cycle |                                                                                                                      |                             |                                          |
| 4.23.6                                           | 30 (D)                    | damp heat<br>(accelerated)<br>remaining cycles      | 6 days; 55 °C; 95 to 98% RH                                                                                          |                             | : 10 <sup>3</sup> MΩ<br>±1% + 0.05 Ω     |
| 4.24.2                                           | 3 (Ca)                    | damp heat<br>(steady state) (IEC)                   | 56 days; 40 °C; 90 to 95% RH; loaded with 0.01 P <sub>n</sub> (IEC steps: 4 to 100 V)                                |                             | 1000 MΩ<br>±1% + 0.05 Ω                  |
| 4.25.1                                           |                           | endurance (at 70 °C)                                | 1000 hours;<br>loaded with P <sub>n</sub> or V <sub>max</sub> ;<br>1.5 hours on and 0.5 hours off                    | ΔR/R max.: <u>-</u>         | ±1% + 0.05 Ω                             |
| 4.23.2                                           | 27 (Ba)                   | endurance at upper category temperature             | 1000 hours;<br>no load                                                                                               | ΔR/R max.: :                | ±1% + 0.05 Ω                             |
| 4.8.4.2                                          |                           | temperature coefficient                             | at 20/LCT/20 °C and 20/UCT/20 °C (TC × 10 <sup>-6</sup> /K):                                                         |                             |                                          |
|                                                  |                           |                                                     | $1 \Omega \le R \le 4.7 \Omega$                                                                                      | ≤±200 × 10 <sup>-6</sup> /K | $\leq \pm 200 \times 10^{-6} / \text{K}$ |
|                                                  |                           | 4 th the                                            | $4.7 \Omega < R \le 15 \Omega$                                                                                       | ≤±200 × 10 <sup>-6</sup> /K | $\leq \pm 100 \times 10^{-6} / K$        |
|                                                  |                           |                                                     | $15 \Omega < R \le 15 k\Omega$                                                                                       | ≤±100 × 10 <sup>-6</sup> /K | $\leq \pm 100 \times 10^{-6} / K$        |
| 4.12                                             |                           | noise                                               | "IEC publication 60195"                                                                                              | <0.1                        | $\mu V/V$                                |
| 4.26                                             |                           | accidental overload                                 | cheese-cloth                                                                                                         | nonflar                     | nmable                                   |
| Other test                                       | s in accord               | ance with IEC 60115 o                               | lauses and IEC 60068 test meth                                                                                       | od                          |                                          |
| 4.17                                             | 20 (Tb)                   | solderability<br>(after ageing)                     | 8 hours steam or 16 hours<br>155 °C; leads immersed 6 mm<br>for 2 $\pm$ 0.5 s in a solder bath at<br>235 $\pm$ 5 °C  |                             | e95% covered);<br>amage                  |
| 4.6.1.1                                          |                           | insulation resistance                               | maximum voltage 500 V (DC)<br>after 1 minute;<br>metal block method                                                  | R <sub>ins</sub> min.       | : 10 <sup>4</sup> MΩ                     |
| see 2 <sup>nd</sup> am<br>to "IEC 60"<br>Jan.'87 |                           | pulse load                                          |                                                                                                                      | see Figs 5,                 | 6, 7, 8 and 9                            |

# MPR24/34

### **FEATURES**

- · Ultra high precision resistors
- · Ultra high stability
- Ultra low temperature coefficient.

### **APPLICATIONS**

- · Test and measurement
- · Telecom.

### DESCRIPTION

A homogeneous film of metal alloy is deposited on a high grade ceramic body. After a helical groove has been cut in the resistive layer, tinned connecting wires of electrolytic copper are welded to the end-caps. The resistors are coated with a green lacquer which provides electrical, mechanical, and climatic protection.

The encapsulation is resistant to all cleaning solvents in accordance with "MIL-STD-202E, method 215", and "IEC 60068-2-45".

Resistors with a resistance value of  $\leq$ 200  $\Omega$  and with tolerances of  $\pm$ 0.05%,  $\pm$ 0.02% and  $\pm$ 0.01% have low inductance.

# **QUICK REFERENCE DATA**

| DECORIDEION                                      | VALUE                                         |                               |  |
|--------------------------------------------------|-----------------------------------------------|-------------------------------|--|
| DESCRIPTION                                      | MPR24                                         | MPR34                         |  |
| Resistance range                                 | 4.99 Ω to 1 MΩ                                |                               |  |
| Resistance tolerance and series:                 |                                               |                               |  |
| 24 $\Omega$ to 100 k $\Omega$                    | ±0.05%; ±0.02%; ±                             | :0.01%; all values            |  |
| 4.99 $\Omega$ to 1 M $\Omega$                    | 1 M $\Omega$ ±0.5%; ±0.25%; ±0.1%; all values |                               |  |
| Maximum dissipation at T <sub>amb</sub> = 70 °C: |                                               |                               |  |
| ±0.05%; ±0.02%; ±0.01%                           | 0.125 W                                       | 0.25 W                        |  |
| ±0.5%; ±0.25%; ±0.1%                             | 0.25 W                                        | 0.4 W                         |  |
| Temperature coefficient characteristic           | ≤±25 ×                                        | 10 <sup>-6</sup> /K           |  |
| between +20 and +70 °C                           | ≤±15 ×                                        | 10 <sup>-6</sup> /K           |  |
|                                                  | ≤±10 × 10 <sup>-6</sup> /K                    |                               |  |
|                                                  | ≤±5 × 1                                       | 10 <sup>−6</sup> /K           |  |
| Failure level:                                   |                                               |                               |  |
| 24 $\Omega$ to 100 k $\Omega$                    | S                                             |                               |  |
| 4.99 $\Omega$ to 1 M $\Omega$                    | R                                             |                               |  |
| Maximum permissible voltage (DC or RMS)          | 250 V                                         | 350 V                         |  |
| Basic specifications                             | EN 140000; MIL-R-10509; MIL-R-                | 55182; DIN 44061; IEC 60115-5 |  |
| Climatic category (IEC 60068):                   |                                               |                               |  |
| ±0.05%; ±0.02%; ±0.01%                           | 55/12                                         | 5/56                          |  |
| ±0.5%; ±0.25%; ±0.1%                             | 55/15                                         | 5/56                          |  |
| Vibration test                                   | 10 to 500 Hz; 0                               | .75 or 98 m/s <sup>2</sup>    |  |
| Air pressure (lower limit)                       | 8.5 kN                                        | N/m <sup>2</sup>              |  |
| Stability after:                                 |                                               |                               |  |
| load                                             | ΔR/R max.: ±0.                                | 05% + 0.01 Ω                  |  |
| climatic tests                                   | $\Delta$ R/R max.: $\pm 0.05\% + 0.01 \Omega$ |                               |  |
| soldering                                        | ΔR/R max.: ±0.                                | 01% + 0.01 Ω                  |  |
| short time overload                              | ΔR/R max.: ±0.                                | 01% + 0.01 Ω                  |  |

MPR24/34

# ORDERING INFORMATION Ordering code (12NC)

- The resistors have a 12-digit ordering code starting with 2322 14
- The 7<sup>th</sup> digit indicates product type and packaging quantity; see Table 6.
- The subsequent 2 digits (8 and 9) indicate temperature coefficient, tolerance, marking and packaging quantity:
  - Table 7 refers to ±0.5%, ±0.25% and ±0.1% tolerance products.
  - Table 8 refers to ±0.05%, ±0.02% and ±0.01% tolerance products.
- The remaining 3 digits indicate the resistance value. The number is available upon request and is fixed by the supplier.

Table 5 Package type per quantity

| QUANTITY    | PACKAGE                                                         |  |  |  |  |  |
|-------------|-----------------------------------------------------------------|--|--|--|--|--|
| 20          | cassette including<br>list with individual<br>measuring details |  |  |  |  |  |
| 100         | bandolier in cardboard box                                      |  |  |  |  |  |
| 500 or 1000 | bandolier in<br>ammopack                                        |  |  |  |  |  |
| 5000        | bandolier on reel                                               |  |  |  |  |  |

Table 6 7th digit from type and quantity

|         |                       | PACKAGING QUANTITY           |                                |  |  |  |
|---------|-----------------------|------------------------------|--------------------------------|--|--|--|
| TYPE    | 7 <sup>th</sup> DIGIT | TOL.<br>±0.5%; ±0.25%; ±0.1% | TOL.<br>±0.05%; ±0.02%; ±0.01% |  |  |  |
| MPR24   | 1                     | 100 or 1000                  | 20 or 100                      |  |  |  |
| WIF N24 | 3                     | 500 or 5000                  | 500 or 1000                    |  |  |  |
| MPR34   | 2                     | 100 or 1000                  | 20 or 100                      |  |  |  |
| WPR34   | 4                     | 500 or 5000                  | 500 or 1000                    |  |  |  |

**Table 7** 8<sup>th</sup> and 9<sup>th</sup> digit; tol.  $\pm 0.5\%$ ;  $\pm 0.25\%$ ;  $\pm 0.1\%$ ; range 4.99  $\Omega$  to 1 M $\Omega$ 

|     |                 | ORDERING CODE 8th and 9th DIGIT |                 |        |                 |        |              |  |  |
|-----|-----------------|---------------------------------|-----------------|--------|-----------------|--------|--------------|--|--|
| тс  | TOL.            | ±0.5%                           | TOL. ±0.25%     |        | TOL.            | ±0.1%  | PACKAGING    |  |  |
|     | colour<br>coded | marked                          | colour<br>coded | marked | colour<br>coded | marked | QUANTITY     |  |  |
| ±25 | 00              | 04                              | 20              | 24     | 40              | 44     | 100 or 500   |  |  |
| IZS | 10              | 14                              | 30              | 34     | 50              | 54     | 1000 or 5000 |  |  |
| ±15 | 01              | 05                              | 21              | 25     | 41              | 45     | 100 or 500   |  |  |
| 113 | 11              | 15                              | 31              | 35     | 51              | 55     | 1000 or 5000 |  |  |
| ±10 | 02              | 06                              | 22              | 26     | 42              | 46     | 100 or 500   |  |  |
| 110 | 12              | 16                              | 32              | 36     | 52              | 56     | 1000 or 5000 |  |  |
| ±5  | 03              | 07                              | 23              | 27     | 43              | 47     | 100 or 500   |  |  |
| 13  | 13              | 17                              | 33              | 37     | 53              | 57     | 1000 or 5000 |  |  |

**Table 8** 8<sup>th</sup> and 9<sup>th</sup> digit; tol.  $\pm 0.05\%$ ;  $\pm 0.02\%$ ;  $\pm 0.01\%$ ; range 24  $\Omega$  to 100 k $\Omega$ 

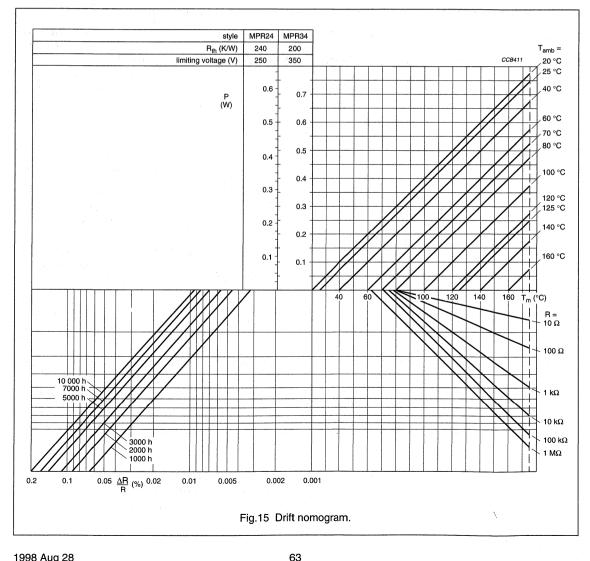
|     | ORDERII     |             |             |                    |
|-----|-------------|-------------|-------------|--------------------|
| тс  | TOL. ±0.05% | TOL. ±0.02% | TOL. ±0.01% | PACKAGING QUANTITY |
|     |             | marked      |             |                    |
| ±25 | 60          | 70          | 80          | 20 or 500          |
| 125 | 64          | 74          | 84          | 100 or 1000        |
| 145 | 61          | 71          | 81          | 20 or 500          |
| ±15 | 65          | 75          | 85          | 100 or 1000        |
| 110 | 62          | 72          | 82          | 20 or 500          |
| ±10 | 66          | 76          | 86          | 100 or 1000        |
| ±5  | 63          | 73          | 83          | 20 or 500          |
| TO  | 67          | 77          | 87          | 100 or 1000        |

### Ordering example

The ordering code of an MPR24 resistor with tolerance of  $\pm 0.02\%$ , TC =  $\pm 5 \times 10^{-6}$ /K, taped on bandolier in box of 100 units starts with 2322 141 77...; the last 3 digits are available upon request and are fixed by the supplier.

MPR24/34

### **FUNCTIONAL DESCRIPTION**


### Product characterization

Any value within the range can be ordered.

The stability as a function of dissipation and ambient temperature is indicated in the performance nomogram (see Fig.15) for resistors with resistance tolerance ≥0.1%.

### NOTES ON THE NOMOGRAM

- · The nomogram should not be extended beyond the maximum permissible hot-spot temperature of 175 °C.
- The resistance range given by the nomogram for P = 0 at a particular ambient temperature is indicative of the shelf life stability of a resistor at that temperature.
- The stability lines do not give exact values but represent a probability of 95% that the real values will be smaller than those indicated in the nomogram.
- In the nomogram the limiting voltage of the resistors have not been taken into consideration.

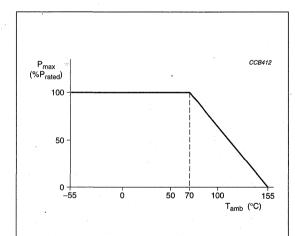


1998 Aug 28

MPR24/34

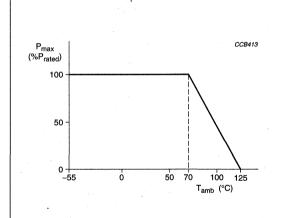
# **Limiting values**

| TYPE                                  | LIMITING VOLTAGE(1) | LIMITING POWER (W)           |                                |  |
|---------------------------------------|---------------------|------------------------------|--------------------------------|--|
| i i i i i i i i i i i i i i i i i i i | (V)                 | TOL.<br>±0.5%; ±0.25%; ±0.1% | TOL.<br>±0.05%; ±0.02%; ±0.01% |  |
| MPR24                                 | 250                 | 0.25                         | 0.125                          |  |
| MPR34                                 | 350                 | 0.4                          | 0.25                           |  |


### Note

1. The maximum voltage that may be continuously applied to the resistor element, see "IEC publication 60115-1".

The maximum permissible hot-spot temperature is 175 °C.


### **DERATING**

The power that the resistor can dissipate depends on the operating temperature; see Figs 16 and 17.



For resistance tolerances of  $\pm 0.5\%$ ,  $\pm 0.25\%$  and  $\pm 0.1\%$ .

Fig.16 Maximum dissipation ( $P_{max}$ ) in percentage of rated power as a function of the ambient temperature ( $T_{amb}$ ).



For resistance tolerances of  $\pm 0.05\%$ ,  $\pm 0.02\%$  and  $\pm 0.01\%$ .

Fig. 17 Maximum dissipation ( $P_{max}$ ) in percentage of rated power as a function of the ambient temperature ( $T_{amb}$ ).

# MPR24/34

### MECHANICAL DATA

# Mass per 100 units

| TYPE  | MASS<br>(g) |
|-------|-------------|
| MPR24 | 25          |
| MPR34 | 30          |

# Marking

The resistors are either colour coded or marked.

Any value within the range can be supplied colour coded, provided the resistance can be expressed in 3 coloured bands.

All other resistors are marked including those in cassette packaging.

### **COLOUR CODING**

Colour coding is in accordance with IEC publication 60062 "Colour codes for fixed resistors".

### MARKING PRINT

When marked, the following details are printed on the resistors (see Fig.19):

- · Manufacturers symbol
- Tolerance code (in accordance with "IEC 60062")
- Temperature coefficient code TC:
  - $\pm 25 = 1$
  - $\pm 15 = 2$
  - $\pm 10 = 3$
  - $\pm 5 = 4$
  - $\pm 2 = 5$
  - $\pm 1 = 6$
  - -0 = 7
- Resistance value code (in accordance with "IEC 60062"), with a maximum of nine positions.

### **Outlines**

The length of the body  $(L_1)$  is measured by inserting the leads into holes of two identical gauge plates and moving these plates parallel to each other until the resistor body is clamped without deformation ("IEC publication 60294").

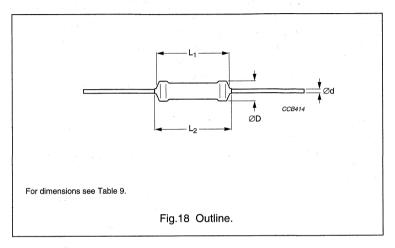
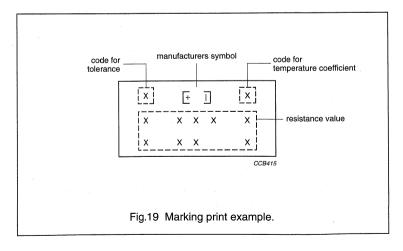




Table 9 Resistor type and relevant physical dimensions; see Fig.18

| TYPE  | ØD<br>MAX.<br>(mm) | L <sub>1</sub><br>MAX.<br>(mm) | L <sub>2</sub><br>MAX.<br>(mm) | Ød<br>(mm) |
|-------|--------------------|--------------------------------|--------------------------------|------------|
| MPR24 | 2.5                | 6.5                            | 7.5                            | 0.58 ±0.05 |
| MPR34 | 3.0                | 10.0                           | 11.0                           | 0.58 ±0.05 |



MPR24/34

### **TESTS AND REQUIREMENTS**

Essentially all tests are carried out in accordance with the schedule of "CECC publication 40.300", category LCT/UCT/56 (rated temperature range: Lower Category Temperature, Upper Category Temperature; damp heat, long term, 56 days) along the lines of "EN 140000".

The tests are carried out in accordance with IEC publication 60068, "Recommended basic climatic and mechanical robustness testing procedure for electronic components" and under standard atmospheric conditions according to "IEC 60068-1", subclause 5.3.

Unless otherwise specified the following values apply:

Temperature: 15 °C to 35 °C Relative humidity: 45% to 75% Air pressure: 86 kPa to 106 kPa (860 mbar to 1060 mbar).

In Table 10 the tests and requirements are listed with reference to the relevant clauses of "EN 140000 and IEC publication 60068"; a short description of the test procedure is also given.

All soldering tests are performed with mildly activated flux.

Table 10 Test procedures and requirements

| CECC<br>40000<br>TEST<br>METHOD | IEC<br>60068-2<br>TEST<br>METHOD | TEST                                 | PROCEDURE                                                                           | REQUIREMENTS                                                                                                                                                         |
|---------------------------------|----------------------------------|--------------------------------------|-------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4.5                             |                                  | insulation<br>resistance             | voltage (DC) after 1 minute;<br>metal block method:<br>MPR24: 500 V<br>MPR34: 700 V | $R_{ins}$ min.: 10 <sup>4</sup> MΩ                                                                                                                                   |
| 4.6                             |                                  | voltage proof                        | 2 × limiting voltage (AC) during<br>1 minute, metal block method                    | no breakdown or flashover                                                                                                                                            |
| 4.7                             | *                                | temperature coefficient              | at 20/70/20 °C                                                                      | $\leq \pm 25 \times 10^{-6} / \text{K}$ ; $\leq \pm 15 \times 10^{-6} / \text{K}$ ; $\leq \pm 10 \times 10^{-6} / \text{K}$ ; $\leq \pm 5 \times 10^{-6} / \text{K}$ |
|                                 |                                  |                                      | at 20/LCT/20 °C and 20/UCT/20 °C (TC × 10 <sup>-6</sup> /K)                         | ≤±25 × 10 <sup>-6</sup> /K                                                                                                                                           |
| 4.10                            |                                  | noise                                | "IEC publication 60 195"<br>(measured with Quantech-equipment):                     | 4.4.0                                                                                                                                                                |
|                                 |                                  |                                      | R ≤ 100 kΩ                                                                          | max. 0.25 μV/V                                                                                                                                                       |
|                                 |                                  |                                      | R > 100 kΩ                                                                          | max. 0.5 μV/V                                                                                                                                                        |
| 4.11                            |                                  | short time overload                  | room temperature; $P = 6.25 \times P_n$ ;<br>5 s ( $V \le 2 \times V_{max}$ )       | $\Delta$ R/R max.: ±0.01% + 0.01 Ω                                                                                                                                   |
| 4.16                            | U                                | robustness of terminations:          | :                                                                                   |                                                                                                                                                                      |
|                                 | Ua                               | tensile all<br>samples               | load 10 N; 10 s                                                                     | number of failures <10 × 10 <sup>-6</sup>                                                                                                                            |
|                                 | Ub                               | bending half<br>number of<br>samples | load 5 N; 4 × 90°                                                                   | number of failures $<10 \times 10^{-6}$                                                                                                                              |
|                                 | Uc                               | torsion other half<br>of samples     | 3 × 360° in opposite directions                                                     | no damage $\Delta$ R/R max.: ±0.01% + 0.01 $\Omega$                                                                                                                  |
| 4.15                            | Та                               | solderability                        | 2 s; 235 °C                                                                         | good tinning; no damage                                                                                                                                              |
| 4.15                            | Tb                               | resistance to soldering heat         | thermal shock: 3 s; 350 °C;<br>6 mm from body                                       | $\Delta$ R/R max.: ±0.01% + 0.01 $\Omega$                                                                                                                            |
| 4.16                            | Na                               | rapid change of temperature          | 30 minutes at LCT and<br>30 minutes at UCT; 5 cycles                                | no visual damage $\Delta R/R$ max.: $\pm 0.01\% + 0.01$ $\Omega$                                                                                                     |

MPR24/34

| CECC<br>40000<br>TEST<br>METHOD | IEC<br>60068-2<br>TEST<br>METHOD | TEST                                                | PROCEDURE                                                                                                   | REQUIREMENTS                                            |
|---------------------------------|----------------------------------|-----------------------------------------------------|-------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|
| 4.17                            | Eb                               | bump                                                | $3 \times 1500$ bumps in 3 directions; 40 g                                                                 | no damage $\Delta R/R$ max.: $\pm 0.01\% + 0.01~\Omega$ |
| 4.19                            | Fc                               | vibration                                           | frequency 10 to 500 Hz; displacement 1.5 mm or acceleration 10 g; 3 directions; total 6 hours (3 × 2 hours) | no damage $\Delta$ R/R max.: ±0.01% + 0.01 $\Omega$     |
| 4.4.1                           |                                  | visual examination                                  |                                                                                                             | no holes; clean surface;<br>no damage                   |
| 4.20                            |                                  | climatic sequence:                                  |                                                                                                             |                                                         |
| 4.20.2                          | В                                | dry heat                                            | 16 hours at UCT                                                                                             |                                                         |
| 4.20.3                          | D                                | damp heat<br>(accelerated)<br>1 <sup>st</sup> cycle | 24 hours; 95 to 100% RH                                                                                     |                                                         |
| 4.20.4                          | Aa                               | cold                                                | 2 hours at LCT                                                                                              |                                                         |
| 4.20.5                          | М                                | low air pressure                                    | 1 hour; 8.5 kPa                                                                                             |                                                         |
| 4.20.6                          | D                                | damp heat                                           | 5 days; 55 °C; 95 to 100% RH                                                                                | $R_{ins}$ min.: 10 <sup>3</sup> M $Ω$                   |
|                                 |                                  | (accelerated) remaining cycles                      |                                                                                                             | $\Delta$ R/R max.: $\pm 0.05\% + 0.01 \Omega$           |
| 4.21                            | Ca                               | damp heat,                                          | 56 days; 40 °C; 90 to 95% RH;                                                                               | $R_{ins}$ min.: 100 $MΩ$                                |
|                                 |                                  | steady state (long term exposure)                   | loaded with 1.25 mW max.                                                                                    | $\Delta$ R/R max.: $\pm 0.05\% + 0.01 \Omega$           |
| 4.25.1                          |                                  | endurance                                           | 2000 hours; loaded with Pn or Vmax;                                                                         | $R_{ins}$ min.: 10 <sup>3</sup> MΩ                      |
|                                 |                                  | (at 70 °C)                                          | 1.5 hours on and 0.5 hours off                                                                              | $\Delta$ R/R max.: ±0.05% + 0.01 Ω                      |

# Power metal film resistors

# PR01/02/03

# **FEATURES**

- · High power in small packages
- Different lead materials for different applications
- · Defined interruption behaviour.

### **APPLICATIONS**

All general purpose power applications.

# **DESCRIPTION**

A homogeneous film of metal alloy is deposited on a high grade ceramic body. After a helical groove has been cut in the resistive layer, tinned connecting wires of electrolytic copper or electroclad iron are welded to the end-caps. The resistors are coated with a red, nonflammable lacquer which provides electrical,

mechanical and climatic protection. This coating is not resistant to aggressive fluxes. The encapsulation is resistant to all cleaning solvents in accordance with "MIL-STD-202E, method 215", and "IEC 60068-2-45".

# **QUICK REFERENCE DATA**

|                                                  | VALUE                                     |                               |                              |                               |                            |  |  |
|--------------------------------------------------|-------------------------------------------|-------------------------------|------------------------------|-------------------------------|----------------------------|--|--|
| DESCRIPTION                                      | PR01                                      | PR0                           | 2                            | PR03                          |                            |  |  |
|                                                  | Phul                                      | Cu-lead                       | FeCu-lead                    | Cu-lead                       | FeCu-lead                  |  |  |
| Resistance range                                 | 0.22 $\Omega$ to 1 M $\Omega$             | 0.33 $\Omega$ to 1 M $\Omega$ | 1 Ω to 1 MΩ                  | 0.68 $\Omega$ to 1 M $\Omega$ | 1 $\Omega$ to 1 M $\Omega$ |  |  |
| Resistance tolerance and series                  | ±1°                                       | % (E96 series); ±5            | % (E24 series);              | see notes 1 and 2             | 2                          |  |  |
| Maximum dissipation at T <sub>amb</sub> = 70 °C: |                                           |                               |                              |                               |                            |  |  |
| R < 1 Ω                                          | 0.6 W                                     | 1.2 W                         | _                            | 1.6 W                         | _                          |  |  |
| 1 Ω ≤ R                                          | 1 W                                       | 2 W                           | 1.3 W                        | 3 W                           | 2.5 W                      |  |  |
| Thermal resistance (R <sub>th</sub> )            | 135 K/W                                   | 75 K/W                        | 115 K/W                      | 60 K/W                        | 75 K/W                     |  |  |
| Temperature coefficient                          |                                           | ≤                             | $\pm 250 \times 10^{-6} / K$ |                               |                            |  |  |
| Maximum permissible voltage (DC or RMS)          | 350 V                                     | 500                           | V                            | 750                           | V                          |  |  |
| Basic specifications                             |                                           | IEC 60                        | 115-1 and 601                | 15-4                          |                            |  |  |
| Climatic category (IEC 60068)                    |                                           |                               | 55/155/56                    |                               |                            |  |  |
| Stability after:                                 |                                           |                               |                              |                               | 1 Williams                 |  |  |
| load                                             | $\Delta$ R/R max.: $\pm 5\% + 0.1 \Omega$ |                               |                              |                               |                            |  |  |
| climatic tests                                   | $\Delta$ R/R max.: ±3% + 0.1 $\Omega$     |                               |                              |                               |                            |  |  |
| soldering                                        |                                           | ΔR/R i                        | max.: ±1% + 0.0              | 05 Ω                          |                            |  |  |

### Notes

- 1. 1% tolerance is available for R<sub>n</sub>-range from 1R upwards.
- 2. 2% tolerance is available on request for  $R_n$ -range from 1R upwards.

# Power metal film resistors

PR01/02/03

# **ORDERING INFORMATION**

Table 1 Ordering code indicating resistor type and packaging

|      |           |     | ORDERING CODE 23 (BANDOLIER) |               |                |                |                             |               | 16.          |               |  |
|------|-----------|-----|------------------------------|---------------|----------------|----------------|-----------------------------|---------------|--------------|---------------|--|
|      |           |     |                              | AMMOPACK      |                |                |                             |               |              |               |  |
| TYPE | LEAD<br>∅ | TOL | DADIAL                       | TARER         |                |                | STRAIGH                     | T LEADS       |              | ,             |  |
|      | (mm)      | (%) | HADIAL                       | . TAPED       | 52 mm          | 52 mm          | 63 mm                       | 73 mm         | 80 mm        | 73 mm         |  |
|      |           |     | 4000<br>units                | 3000<br>units | 5000<br>units  | 1 000<br>units | 500<br>units                | 1000<br>units | 500<br>units | 5000<br>units |  |
|      | C., 0.6   | 1   | _                            | _             | 22 196<br>1    | _              | _                           | _             | <del>-</del> | -<br>-        |  |
| PR01 | Cu 0.6    | 5   | 06 197<br>03                 | -             | 22 193<br>14   |                | · _                         | 22 193<br>13  | · · · · · ·  | 22 193<br>23  |  |
|      | Cu 0.8    | 1   | _                            | -<br>-        | . <del>-</del> | 22 197<br>1    | <del></del>                 | _             | -            | _             |  |
| PR02 | Cu 0.8    | 5   | _                            | 06 198<br>03  | <u>-</u>       | 22 194<br>14   | ·                           | 22 194<br>13  | · · ·        | _             |  |
|      | FeCu 0.6  | 5   | <del>-</del>                 |               |                | 22 194<br>54   | _                           | 22 194<br>53  | _            | _ '           |  |
|      | Cu 0.8    | 5   | -                            | _ ` ' ' ;     | <u>-4</u>      | _              | 22 195<br>14 <sup>(1)</sup> | _             | 22 195<br>13 | <u>-</u>      |  |
| PR03 | FeCu 0.6  | 5   | _                            |               | _              | _              | 22 195<br>54 <sup>(1)</sup> | -             | 22 195<br>53 |               |  |

# Note

1. Available Q2 1999.

Table 2 Ordering code indicating resistor type and packaging

|      |          |     | ORDERING CODE 23 (LOOSE IN BOX) |                          |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|------|----------|-----|---------------------------------|--------------------------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| -    | LEAD     | TOL | CROPPED AN                      | ID FORMED <sup>(1)</sup> | DOUBLE KINK    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| TYPE | (mm)     | (%) | h <sup>(2)</sup> = 8 mm         | h <sup>(2)</sup> = 15 mm | LARGE PITCH(1) | SMALL PITCH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |
|      |          |     | 4000 units                      | 5000 units               | 1000 units     | 500 units                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
| DD04 | Cu 0.6   | 5   | 22 193 33 <sup>(3)</sup>        | <del>-</del>             | 22 193 03      | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |
| PR01 | FeCu 0.6 | 5   | _                               | _                        | 22 193 43      | 22 193 53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
|      | Cu 0.8   | 5   | 22 194 33                       | 22 194 43                |                | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |
| PR02 | FeCu 0.6 | 5   | 22 194 73 <sup>(3)</sup>        |                          | 22 194 83      | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |
|      | FeCu 0.8 | 5   | -                               | _                        |                | 22 194 63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
|      | Cu 0.8   | 5   | 22 195 33                       | 22 195 43                | _              | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |
| PR03 | FeCu 0.6 | 5   | 22 195 73 <sup>(3)</sup>        | _                        | 22 195 83      | and the second s |  |  |
|      | FeCu 0.8 | 5   | _                               |                          | _              | 22 195 63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |

## Notes

- 1. Maintenance types, not for new designs.
- 2. h = mounted height above PCB (see Fig.41).
- 3. Type can be replaced by double kink, large pitch.

# Power metal film resistors

# PR01/02/03

# Ordering code (12NC)

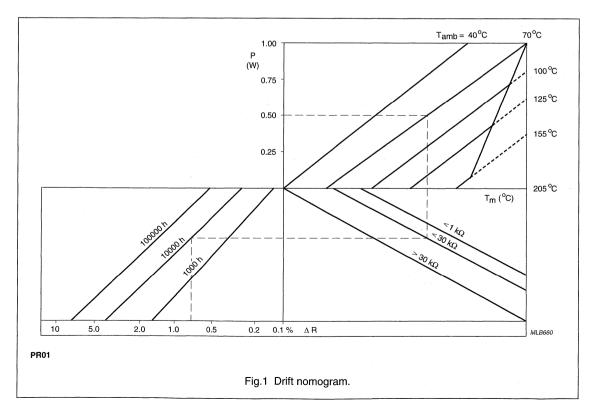
- The resistors have a 12-digit ordering code starting with 23.
- The first 7 digits indicate the resistor type and packaging; see Tables 1 and 2.
- The remaining 3 digits indicate the resistance value:
  - The first 2 digits indicate the resistance value.
  - The last digit indicates the resistance decade in accordance with Table 3.

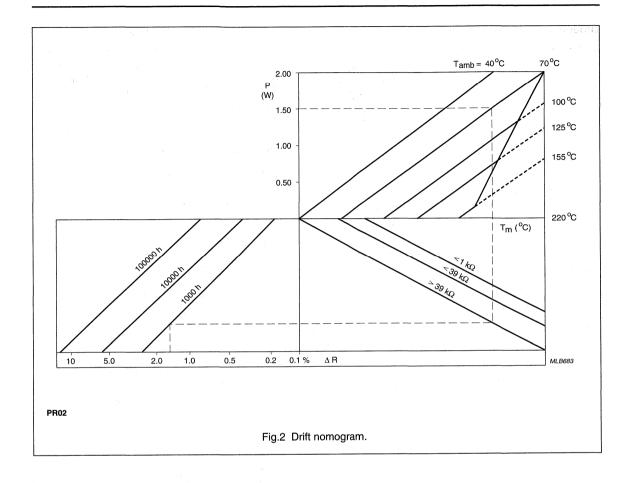
Table 3 Last digit of 12NC

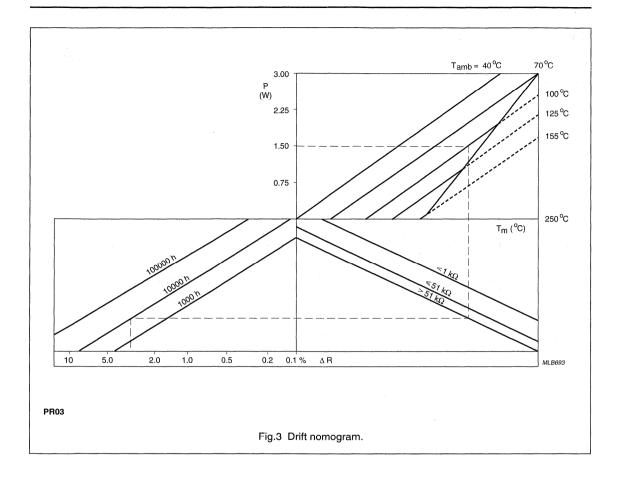
| RESISTANCE<br>DECADE | LAST DIGIT |
|----------------------|------------|
| 0.1 to 0.91 Ω        | note 1     |
| 1 to 9.1 Ω           | 8          |
| 10 to 91 Ω           | 9          |
| 100 to 910 Ω         | 1          |
| 1 to 9.1 kΩ          | 2          |
| 10 to 91 kΩ          | 3          |
| 100 to 910 kΩ        | 4          |
| 1 ΜΩ                 | 5          |

# Note

1. 12NC available on request.


### Ordering example


The ordering code for resistor type PR02 with Cu leads and a value of 750  $\Omega$ , supplied on a bandolier of 1000 units in ammopack, is: 2322 194 13751.


### **FUNCTIONAL DESCRIPTION**

### Product characterization

Standard values of nominal resistance are taken from the E24 series for resistors with a tolerance of  $\pm 5\%$ . The values of the E24 series are in accordance with "IEC publication 60063".







PR01/02/03

### Limiting values

| ТҮРЕ | LEAD MATERIAL | RANGE   | LIMITING VOLTAGE <sup>(1)</sup> (V) | LIMITING POWER<br>(W) |
|------|---------------|---------|-------------------------------------|-----------------------|
| DD01 | Ci            | R<1Ω    | 350                                 | 0.6                   |
| PR01 | Cu            | 1 Ω ≤ R | 330                                 | 1.0                   |
|      | C.,           | R<1Ω    |                                     | 1.2                   |
| PR02 | Cu            | 1 Ω ≤ R | 500                                 | 2.0                   |
|      | FeCu          | 1 Ω ≤ R |                                     | 1.3                   |
|      | 0             | R<1Ω    |                                     | 1.6                   |
| PR03 | Cu            | 1 Ω ≤ R | 750                                 | 3.0                   |
|      | FeCu          | 1 Ω ≤ R |                                     | 2.5                   |

#### Note

1. The maximum voltage that may be continuously applied to the resistor element, see "IEC publication 60115-1".

The maximum permissible hot-spot temperature is 235 °C for PR01, 220 °C for PR02 and 250 °C for PR03.

#### **DERATING**

The power that the resistor can dissipate depends on the operating temperature; see Fig.4.

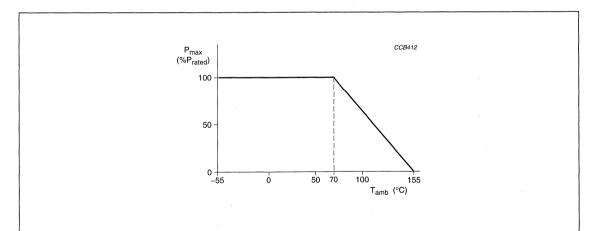
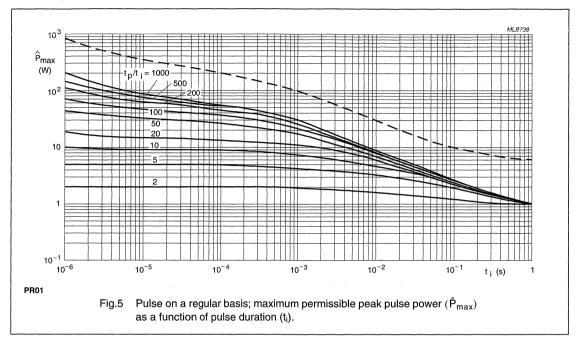
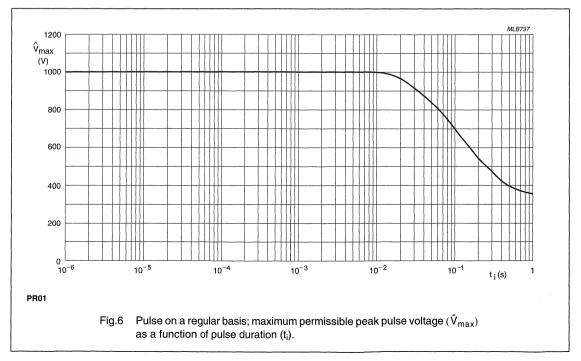
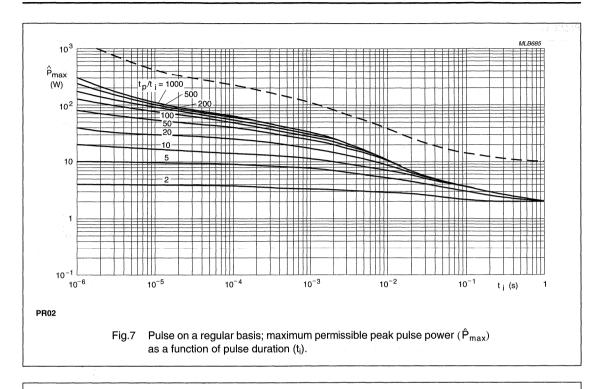
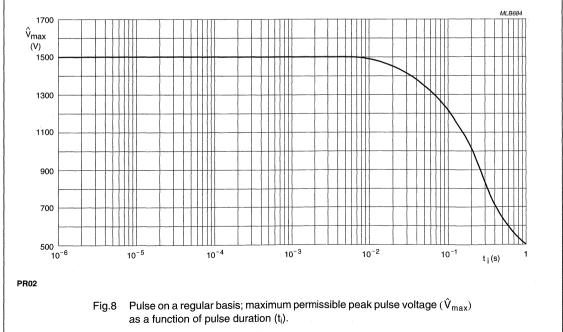





Fig.4 Maximum dissipation (P<sub>max</sub>) in percentage of rated power as a function of the ambient temperature (T<sub>amb</sub>).

PR01/02/03

#### PULSE LOADING CAPABILITIES

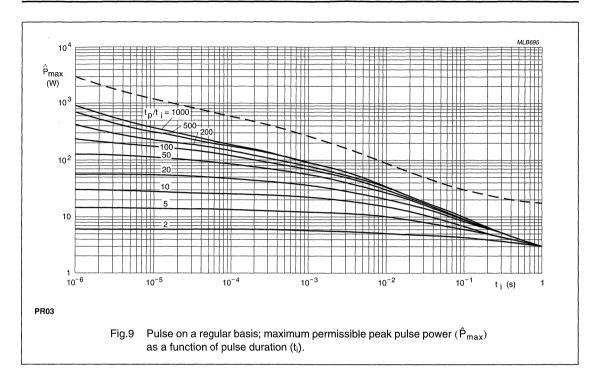


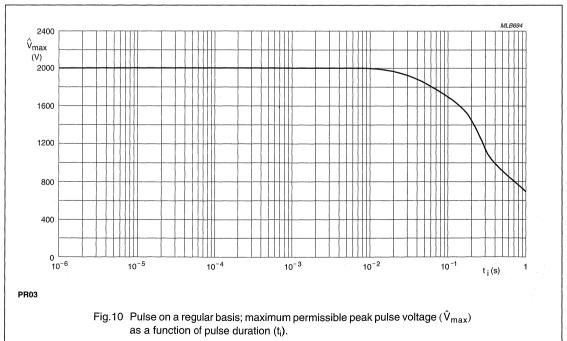




Philips Components Product specification

### Power metal film resistors

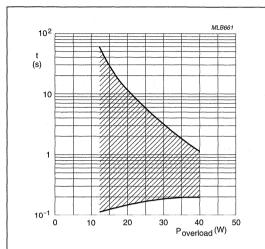
### PR01/02/03




1998 Aug 28 75

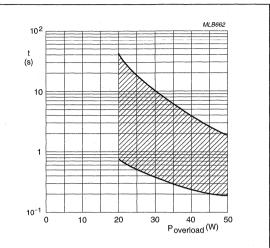
Philips Components Product specification


## Power metal film resistors





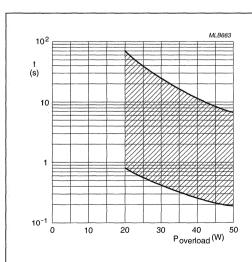
### PR01/02/03


#### INTERRUPTION CHARACTERISTICS



The graph is based on measured data under constant voltage conditions; these data may deviate according to the application.

#### PR01


Fig.11 Time to interruption as a function of overload power for range:  $0R22 \le R_n < 1R$ .

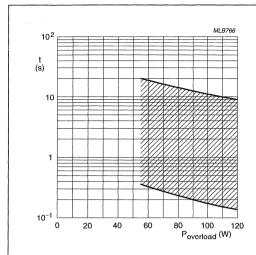


The graph is based on measured data under constant voltage conditions; these data may deviate according to the application.

#### PR0

Fig.12 Time to interruption as a function of overload power for range:  $1R \le R_n \le 15R$ .

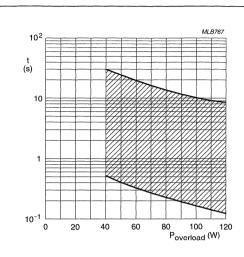



The graph is based on measured data under constant voltage conditions; these data may deviate according to the application.

#### PR01

Fig.13 Time to interruption as a function of overload power for range:  $16R \le R_n \le 560R$ .

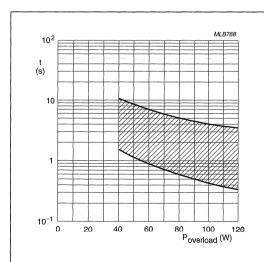
1998 Aug 28 77


### PR01/02/03



The graph is based on measured data under constant voltage conditions; these data may deviate according to the application.

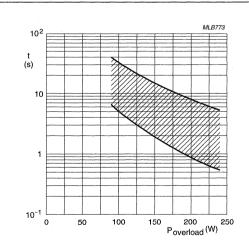
#### PR02


Fig.14 Time to interruption as a function of overload power for range:  $0.33R \le R_n < 5R$ .



The graph is based on measured data under constant voltage conditions; these data may deviate according to the application.

#### PR02


Fig. 15 Time to interruption as a function of overload power for range:  $5R \le R_n < 68R$ .

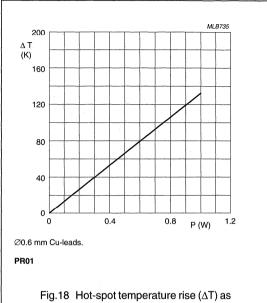


The graph is based on measured data under constant voltage conditions; these data may deviate according to the application.

#### PR02

Fig.16 Time to interruption as a function of overload power for range:  $68R \le R_n \le 560R$ .




The graph is based on measured data under constant voltage conditions; these data may deviate according to the application.

#### PR03

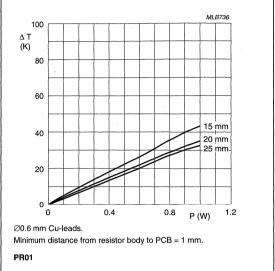
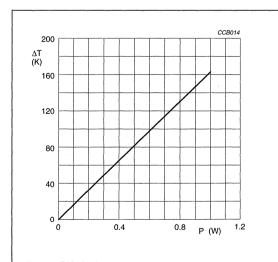
Fig.17 Time to interruption as a function of overload power for range:  $0.68R \le R_n \le 560R$ .

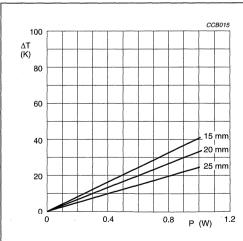
### PR01/02/03

### **Application information**



a function of dissipated power.



Fig.19 Temperature rise ( $\Delta T$ ) at the lead end (soldering point) as a function of dissipated power at various lead lengths after mounting.



Ø0.6 mm FeCu-leads.

PR01

Fig.20 Hot-spot temperature rise ( $\Delta T$ ) as a function of dissipated power.



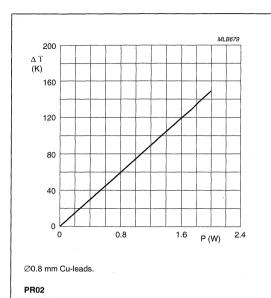
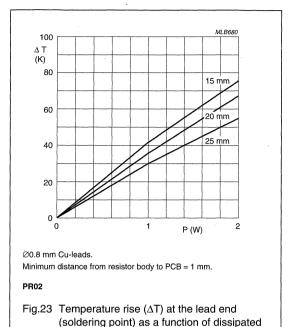
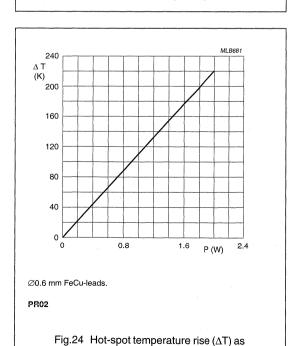
Ø0.6 mm FeCu-leads.

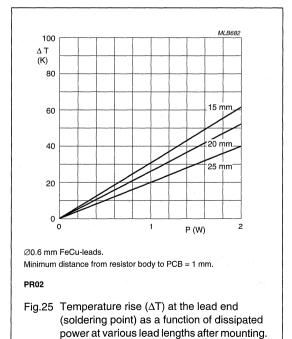
Minimum distance from resistor body to PCB = 1 mm.

PR01

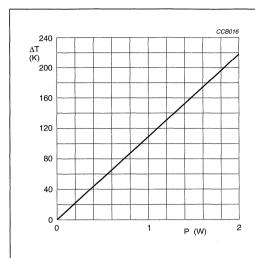
Fig.21 Temperature rise ( $\Delta T$ ) at the lead end (soldering point) as a function of dissipated power at various lead lengths after mounting.

### PR01/02/03



Fig.22 Hot-spot temperature rise ( $\Delta T$ ) as a function of dissipated power.

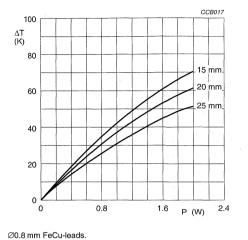



power at various lead lengths after mounting.



a function of dissipated power.

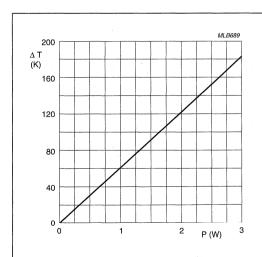



### PR01/02/03



Ø0.8 mm FeCu-leads.

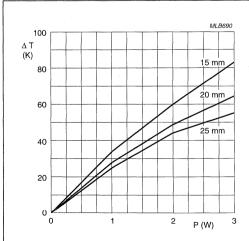
PR02


Fig.26 Hot-spot temperature rise ( $\Delta T$ ) as a function of dissipated power.



Minimum distance from resistor body to PCB = 1 mm.

PR02


Fig.27 Temperature rise ( $\Delta T$ ) at the lead end (soldering point) as a function of dissipated power at various lead lengths after mounting.



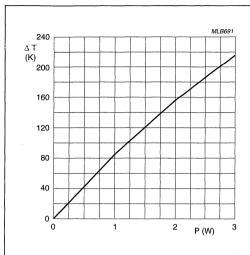
Ø0.8 mm Cu-leads.

PR03

Fig.28 Hot-spot temperature rise ( $\Delta T$ ) as a function of dissipated power.



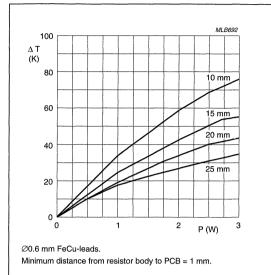
Ø0.8 mm Cu-leads.


Minimum distance from resistor body to PCB = 1 mm.

PR03

81

Fig.29 Temperature rise ( $\Delta T$ ) at the lead end (soldering point) as a function of dissipated power at various lead lengths after mounting.


### PR01/02/03



Ø0.6 mm FeCu-leads.

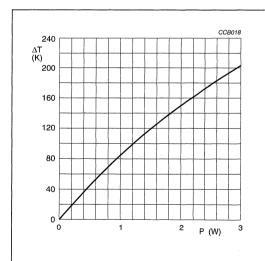
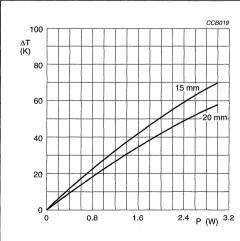

PR03

Fig.30 Hot-spot temperature rise ( $\Delta T$ ) as a function of dissipated power.



PR03

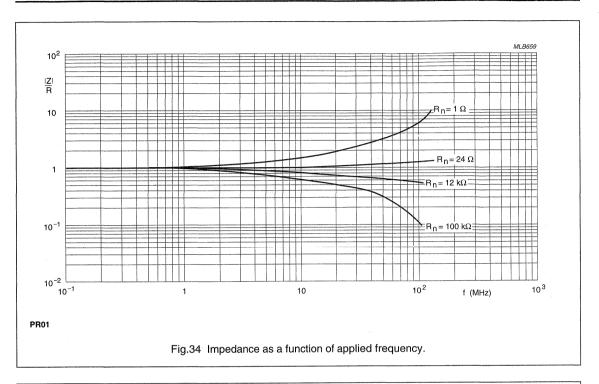

Fig.31 Temperature rise (ΔT) at the lead end (soldering point) as a function of dissipated power at various lead lengths after mounting.

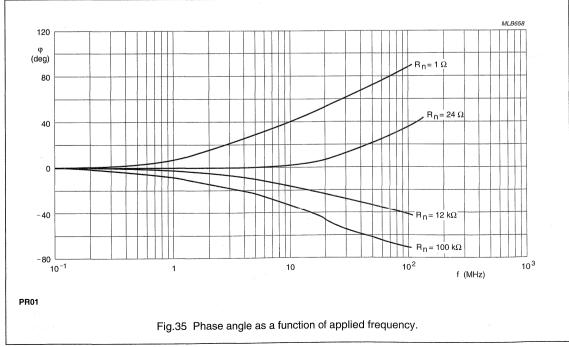


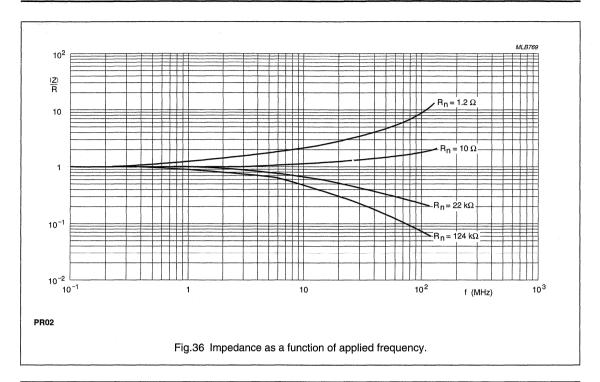
Ø0.8 mm FeCu-leads.

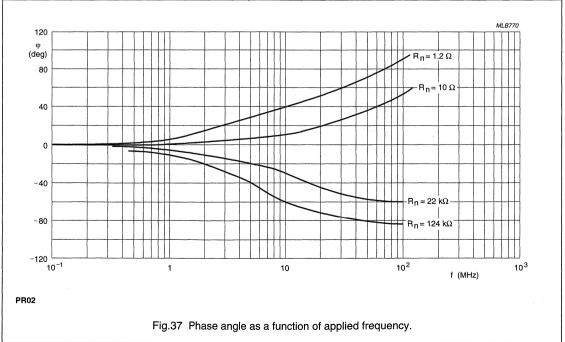
PR03

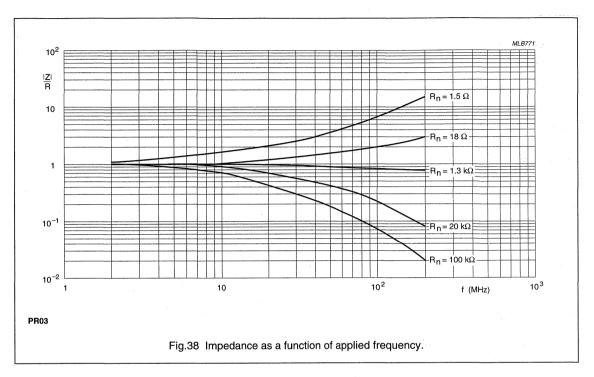
Fig.32 Hot-spot temperature rise ( $\Delta T$ ) as a function of dissipated power.

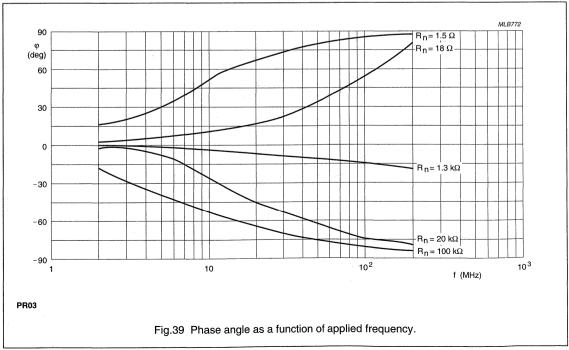




Ø0.8 mm FeCu-leads.


Minimum distance from resistor body to PCB = 1 mm.


#### PR03


Fig.33 Temperature rise ( $\Delta$ T) at the lead end (soldering point) as a function of dissipated power at various lead lengths after mounting.














### PR01/02/03

#### **MECHANICAL DATA**

#### Mass per 100 units

| TYPE LEAD MATERIAL |      | MASS<br>(g) |
|--------------------|------|-------------|
| PR01               | Cu   | 29          |
|                    | FeCu | 29          |
| PR02               | Cu   | 63          |
|                    | FeCu | 45          |
| PR03               | Cu   | 110         |
|                    | FeCu | 100         |

#### Mounting

The resistors are suitable for processing on automatic insertion equipment and cutting and bending machines.

#### Marking

The nominal resistance and tolerance are marked on the resistor using four coloured bands in accordance with IEC publication 60062, "Colour codes for fixed resistors".

#### **Outlines**

The length of the body (L<sub>1</sub>) is measured by inserting the leads into holes of two identical gauge plates and moving these plates parallel to each other until the resistor body is clamped without deformation ("IEC publication 60294").

### **Mounting pitch**

| TYPE | LEAD STYLE              | PIT                 | СН               |
|------|-------------------------|---------------------|------------------|
| 1175 | LEADSITLE               | mm                  | е                |
| PR01 | straight leads          | 12.5 <sup>(1)</sup> | 5 <sup>(1)</sup> |
|      | radial taped            | 4.8                 | 2                |
|      | cropped and formed      | 17.8                | 7                |
|      | double kink large pitch | 17.8                | 7                |
|      | double kink small pitch | 12.5                | 5                |
| PR02 | straight leads          | 15.0 <sup>(1)</sup> | 6 <sup>(1)</sup> |
|      | radial taped            | 4.8                 | 2                |
|      | cropped and formed      | 17.8                | 7                |
|      | double kink large pitch | 17.8                | 7                |
|      | double kink small pitch | 15.0                | 6 1              |
| PR03 | straight leads          | 23.0 <sup>(1)</sup> | 9(1)             |
|      | cropped and formed      | 25.4                | 10               |
| 1    | double kink large pitch | 25.4                | 10               |
|      | double kink small pitch | 20.0                | 8                |

#### Note

1. Recommended minimum value.

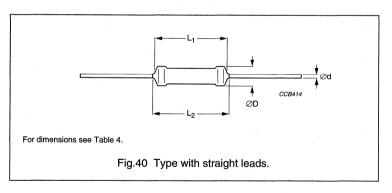



Table 4 Straight lead type and relevant physical dimensions: see Fig.40

| TYPE  | ØD<br>MAX.<br>(mm) | L <sub>1</sub><br>MAX.<br>(mm) | L <sub>2</sub><br>MAX.<br>(mm) | Ød<br>(mm) |            |
|-------|--------------------|--------------------------------|--------------------------------|------------|------------|
| PR01  | 2.5                | 6.5                            | 8.5                            | 0.58 ±0.05 |            |
| PR02  | PR02 3.9 10.0 12.0 | 12.0                           | 0.8 ±0.03                      |            |            |
| I NOZ | 3.9                | 9   10.0   12.0                | 0.0                            | 12.0       | 0.58 ±0.05 |
| PR03  | 5.2                | 16.7                           | 19.5                           | 0.8 ±0.03  |            |
| FNUO  | 5.2                | 10.7                           |                                | 0.58 ±0.05 |            |

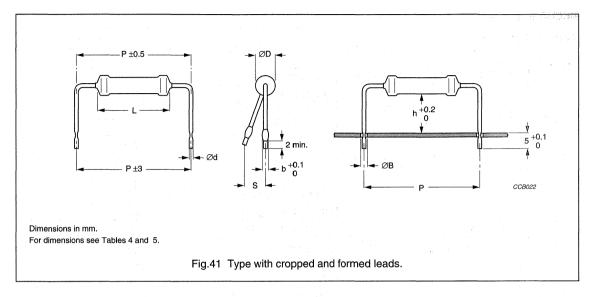



Table 5 Cropped and formed lead type and relevant physical dimensions; see Fig.41

| TYPE | LEAD STYLE         | Ød<br>(mm) | b<br>(mm) | h<br>(mm) | P<br>(mm) | S<br>MAX.<br>(mm) | ØB<br>MAX.<br>(mm) |
|------|--------------------|------------|-----------|-----------|-----------|-------------------|--------------------|
| PR01 |                    | 0.58 ±0.05 | 1.1       | 8         | 17.8      | 2                 | 1.0                |
|      |                    | 0.8 ±0.03  | 1.3       | 8         |           | 2                 | 1.2                |
| PR02 |                    | 0.8 ±0.03  | 1.3       | 15        | 17.8      | 3                 | 1.2                |
|      | cropped and formed | 0.58 ±0.05 | 1.1       | 8         |           | 2                 | 1.0                |
|      |                    | 0.8 ±0.03  | 1.3       | 8         |           | 2                 | 1.2                |
| PR03 |                    | 0.8 ±0.03  | 1.3       | 15        | 25.4      | 3                 | 1.2                |
|      |                    | 0.58 ±0.05 | 1.1       | 8         | A TORREST | 2                 | 1.0                |

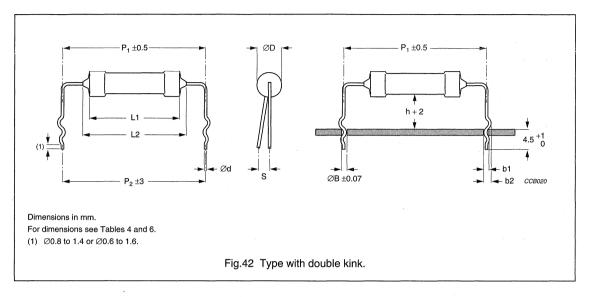



Table 6 Double kink lead type and relevant physical dimensions; see Fig.42

| TYPE   | LEAD STYLE                 | Ød<br>(mm) | b1<br>(mm)          | b2<br>(mm)          | h<br>(mm) | P <sub>1</sub><br>(mm) | P <sub>2</sub><br>(mm) | S<br>MAX.<br>(mm) | ØB<br>(mm) |
|--------|----------------------------|------------|---------------------|---------------------|-----------|------------------------|------------------------|-------------------|------------|
| PR01   | double kink<br>large pitch | 0.58 ±0.05 | 1.10<br>+0.25/–0.20 | 1.45<br>+0.25/–0.20 | 8         | 17.8                   | 17.8                   | 2                 | 0.8        |
| FROT   | double kink<br>small pitch | 0.58 ±0.05 | 1.10<br>+0.25/–0.20 | 1.45<br>+0.25/–0.20 | 8         | 12.5                   | 12.5                   | 2                 | 0.8        |
| PR02   | double kink<br>large pitch | 0.58 ±0.05 | 1.10<br>+0.25/–0.20 | 1.45<br>+0.25/0.20  | . 8       | 17.8                   | 17.8                   | 2                 | 0.8        |
| FR02   | double kink<br>small pitch | 0.8 ±0.03  | 1.30<br>+0.25/–0.20 | 1.65<br>+0.25/–0.20 | 8         | 15.0                   | 15.0                   | 2                 | 1.0        |
| PR03   | double kink<br>large pitch | 0.58 ±0.05 | 1.10<br>+0.25/–0.20 | 1.45<br>+0.25/–0.20 | 8         | 25.4                   | 25.4                   | 2                 | 0.8        |
| 1 1103 | double kink<br>small pitch | 0.8 ±0.03  | 1.30<br>+0.25/–0.20 | 2.15<br>+0.25/–0.20 | 8         | 22.0                   | 20.0                   | 2                 | 1.0        |

PR01/02/03

#### **TESTS AND REQUIREMENTS**

Essentially all tests are carried out in accordance with the schedule of "IEC publication 60115-1", category LCT/UCT/56 (rated temperature range: Lower Category Temperature, Upper Category Temperature; damp heat, long term, 56 days). The testing also covers the requirements specified by EIA and EIAJ.

The tests are carried out in accordance with IEC publication 60068, "Recommended basic climatic and mechanical robustness testing procedure for electronic components" and under standard atmospheric conditions according to "IEC 60068-1", subclause 5.3.

Unless otherwise specified the following values apply:

Temperature: 15 °C to 35 °C Relative humidity: 45% to 75% Air pressure: 86 kPa to 106 kPa (860 mbar to 1060 mbar).

In Table 7 the tests and requirements are listed with reference to the relevant clauses of "IEC publications 60115-1 and 60068"; a short description of the test procedure is also given. In some instances deviations from the IEC recommendations were necessary for our method of specifying.

All soldering tests are performed with mildly activated flux.

Table 7 Test procedures and requirements

| IEC<br>60115-1<br>CLAUSE | IEC<br>60068-2<br>TEST<br>METHOD | TEST                         | PROCEDURE                                                                                                                                                                                                                                                                                                       | REQUIREMENTS                           |
|--------------------------|----------------------------------|------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|
| Tests in a               | ccordance                        | with the schedule o          | of IEC publication 60115-1                                                                                                                                                                                                                                                                                      |                                        |
| 4.4.1                    |                                  | visual examination           |                                                                                                                                                                                                                                                                                                                 | no holes; clean surface;<br>no damage  |
| 4.4.2                    |                                  | dimensions<br>(outline)      | gauge (mm)                                                                                                                                                                                                                                                                                                      | see Tables 4, 5 and 6                  |
| 4.5                      | 27                               | resistance                   | applied voltage (+0/–10%): $R < 10 \ \Omega : 0.1 \ V$ $10 \ \Omega \le R < 100 \ \Omega : 0.3 \ V$ $100 \ \Omega \le R < 1 \ k\Omega : 1 \ V$ $1 \ k\Omega \le R < 10 \ k\Omega : 3 \ V$ $10 \ k\Omega \le R < 100 \ k\Omega : 10 \ V$ $100 \ k\Omega \le R < 1 \ M\Omega : 25 \ V$ $R = 1 \ M\Omega : 50 \ V$ | R – R <sub>nom</sub> : max. ±5%        |
| 4.18                     | Tb                               | resistance to soldering heat | thermal shock: 3 s; 350 °C;<br>6 mm from body                                                                                                                                                                                                                                                                   | $\Delta$ R/R max.: ±1% + 0.05 $\Omega$ |
| 4.29                     | 45 (Xa)                          | component solvent resistance | isopropyl alcohol or H <sub>2</sub> O followed by brushing in accordance with "MIL 202 F"                                                                                                                                                                                                                       | no visual damage                       |
| 4.17                     | Ta                               | solderability                | 2 s; 235 °C                                                                                                                                                                                                                                                                                                     | good tinning; no damage                |
| 4.7                      |                                  | voltage proof on insulation  | maximum voltage 500 V (RMS)<br>during 1 minute; metal block method                                                                                                                                                                                                                                              | no breakdown or flashover              |

| IEC<br>60115-1<br>CLAUSE                         | IEC<br>60068-2<br>TEST<br>METHOD | TEST                                                | PROCEDURE                                                                                                                | REQUIREMENTS                                                                                                                                                                                            |
|--------------------------------------------------|----------------------------------|-----------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4.16                                             | U                                | robustness of terminations:                         |                                                                                                                          |                                                                                                                                                                                                         |
| 4.16.2                                           | Ua                               | tensile all samples                                 | load 10 N; 10 s                                                                                                          | number of failures: <1 × 10 <sup>-6</sup>                                                                                                                                                               |
| 4.16.3                                           | Ub                               | bending half<br>number of<br>samples                | load 5 N; 4 × 90°                                                                                                        | number of failures: $<1 \times 10^{-6}$                                                                                                                                                                 |
| 4.16.4                                           | Uc                               | torsion other half of samples                       | $3 \times 360^{\circ}$ in opposite directions                                                                            | no damage $\Delta$ R/R max.: $\pm$ 0.5% + 0.05 $\Omega$                                                                                                                                                 |
| 4.20                                             | Eb                               | bump                                                | $3 \times 1500$ bumps in three directions; 40 g                                                                          | no damage $\Delta$ R/R max.: $\pm 0.5\% + 0.05 \Omega$                                                                                                                                                  |
| 4.22                                             | Fc                               | vibration                                           | frequency 10 to 500 Hz;<br>displacement 1.5 mm or<br>acceleration 10 g; three directions;<br>total 6 hours (3 × 2 hours) | no damage<br>$\Delta$ R/R max.: $\pm 0.5\%$ + 0.05 $\Omega$                                                                                                                                             |
| 4.19                                             | 14 (Na)                          | rapid change of<br>temperature                      | 30 minutes at LCT and<br>30 minutes at UCT; 5 cycles                                                                     | no visual damage<br><b>PR01</b> : $\Delta$ R/R max.: $\pm$ 1% + 0.05 $\Omega$<br><b>PR02</b> : $\Delta$ R/R max.: $\pm$ 1% + 0.05 $\Omega$<br><b>PR03</b> : $\Delta$ R/R max.: $\pm$ 2% + 0.05 $\Omega$ |
| 4.23                                             |                                  | climatic sequence:                                  |                                                                                                                          |                                                                                                                                                                                                         |
| 4.23.3                                           | 30 (D)                           | damp heat<br>(accelerated)<br>1 <sup>st</sup> cycle |                                                                                                                          |                                                                                                                                                                                                         |
| 4.23.6                                           | 30 (D)                           | damp heat<br>(accelerated)<br>remaining cycles      | 6 days; 55 °C; 95 to 98% RH                                                                                              | $R_{ins}$ min.: 10 <sup>3</sup> MΩ<br>ΔR/R max.: ±3% + 0.1 Ω                                                                                                                                            |
| 4.24.2                                           | 3 (Ca)                           | damp heat<br>(steady state) (IEC)                   | 56 days; 40 °C; 90 to 95% RH; loaded with 0.01 P <sub>n</sub> (IEC steps: 4 to 100 V)                                    | R <sub>ins</sub> min.: 1000 MΩ                                                                                                                                                                          |
| 4.25.1                                           |                                  | endurance<br>(at 70 °C)                             | 1000 hours; loaded with P <sub>n</sub> or V <sub>max</sub> ;<br>1.5 hours on and 0.5 hours off                           | $\Delta$ R/R max.: $\pm$ 3% + 0.1 $\Omega$<br>$\Delta$ R/R max.: $\pm$ 5% + 0.1 $\Omega$                                                                                                                |
| 4.8.4.2                                          |                                  | temperature coefficient                             | at 20/LCT/20 °C and 20/UCT/20 °C (TC × 10 <sup>-6</sup> /K)                                                              | ≤±250                                                                                                                                                                                                   |
| Other test                                       | s in accord                      | dance with IEC 6011                                 | 5 clauses and IEC 60068 test method                                                                                      |                                                                                                                                                                                                         |
| 4.17                                             | 20 (Tb)                          | solderability<br>(after ageing)                     | 8 hours steam or 16 hours 155 °C;<br>leads immersed 6 mm for 2 ±0.5 s in a<br>solder bath at 235 ±5 °C                   | good tinning (≥95% covered);<br>no damage                                                                                                                                                               |
| 4.6.1.1                                          |                                  | insulation resistance                               | maximum voltage (DC) after 1 minute;<br>metal block method                                                               | $R_{ins}$ min.: $10^4$ M $\Omega$                                                                                                                                                                       |
| see 2 <sup>nd</sup> an<br>to IEC 600<br>Jan. '87 |                                  | pulse load                                          |                                                                                                                          | see Figs 5, 6, 7, 8, 9 and 10                                                                                                                                                                           |

**VR25** 

#### **FEATURES**

- · High pulse loading capability
- · Small size.

#### **APPLICATIONS**

- Where high resistance, high stability and high reliability at high voltage are required
- · High humidity environment
- · White goods
- · Power supplies.

#### **DESCRIPTION**

A metal glazed film is deposited on a high grade ceramic body. After a helical groove has been cut in the resistive layer, tinned electrolytic copper wires are welded to the end-caps. The resistors are coated with a light blue lacquer which provides electrical, mechanical, and climatic protection.

The encapsulation is resistant to all cleaning solvents in accordance with "MIL-STD 202E, method 215" and "IEC 60068-2-45".

#### QUICK REFERENCE DATA

| DESCRIPTION                                                    | VALUE                            |
|----------------------------------------------------------------|----------------------------------|
| Resistance range                                               | 100 k $\Omega$ to 22 M $\Omega$  |
| Resistance tolerance and series:                               |                                  |
| 100 kΩ to 15 MΩ                                                | ±5%: E24 series                  |
| 15 MΩ to 22 MΩ                                                 | ±10%: E12 series                 |
| 220 kΩ to 15 MΩ                                                | ±1%: E24/E96 series              |
| Maximum dissipation at T <sub>amb</sub> = 70 °C                | 0.25 W                           |
| Thermal resistance, R <sub>th</sub>                            | 200 K/W                          |
| Temperature coefficient                                        | ≤±200 × 10 <sup>-6</sup> /K      |
| Maximum permissible voltage:                                   |                                  |
| DC                                                             | 1600 V                           |
| RMS                                                            | 1150 V                           |
| Dielectric withstanding voltage of the insulation for 1 minute | 700 V                            |
| Basic specifications                                           | IEC 60115-1B                     |
| Climatic category (IEC 60068)                                  | 55/155/56                        |
| Stability after:                                               |                                  |
| load (1000 hours)                                              | $\Delta$ R/R max.: ±1.5% + 0.1 Ω |
| accelerated damp heat test (6 days)                            | ΔR/R max.: ±1.5% + 0.1 Ω         |
| long term damp heat test (56 days)                             | $\Delta$ R/R max.: ±1.5% + 0.1 Ω |
| Noise                                                          | max. 5 μV/V                      |

VR25

#### **ORDERING INFORMATION**

Table 1 Ordering code indicating resistor type and packaging

|      |                       |             |                                      | ORDERING CO | DDE 2322 241 | a. San San Brand Constitution of the San |
|------|-----------------------|-------------|--------------------------------------|-------------|--------------|------------------------------------------------------------------------------|
| TYPE | TAPE<br>WIDTH<br>(mm) | TOL.<br>(%) | BANDOLIER IN AMMOPACK <sup>(1)</sup> |             |              | BANDOLIER<br>ON REEL                                                         |
|      | ()                    |             | 1000 units                           | 2000 units  | 5000 units   | 5000 units                                                                   |
|      | 52                    | ±1          | 8                                    | <u> </u>    | -            | _                                                                            |
|      |                       | ±5          | 13                                   | <u> </u>    | 53           | 23                                                                           |
| VR25 |                       | ±10         | 12                                   |             | 52           | 22                                                                           |
|      | 26                    | ±5          | _ ` :                                | 43          |              | <u> </u>                                                                     |
|      |                       | ±10         |                                      | 42          | _            | _ :.                                                                         |

#### Note

1. Radial taped version available on request.

### Ordering code (12NC)

- The resistors have a 12-digit ordering code starting with 2322 241
- The subsequent: first digit for 1% tolerance products (E24 and E96 series) or 2 digits for 5% (E24 series) and 10% (E12 series) indicate the resistor type and packaging; see Table 1.
- The remaining digits indicate the resistance value:
  - The first 3 digits for 1% or 2 digits for 5 and 10% tolerance products indicate the resistance value.
  - The last digit indicates the resistance decade in accordance with Table 2.

Table 2 Last digit of 12NC

| RESISTANCE<br>DECADE | LAST DIGIT |  |
|----------------------|------------|--|
| 100 to 976 kΩ        | 4          |  |
| 1 to 9.76 MΩ         | 5          |  |
| ≥10 MΩ               | 6          |  |

#### ORDERING EXAMPLE

The ordering code for a VR25, resistor value 7.5  $M\Omega$ , 5% tolerance, supplied on a bandolier of 1000 units in ammopack, is: 2322 241 13755.

VR25

#### **FUNCTIONAL DESCRIPTION**

#### **Product characterization**

Standard values of nominal resistance are taken from the E96/E24/E12 series for resistors with a tolerance of  $\pm 1\%$ , 5% or 10%. The values of the E96/E24/E12 series are in accordance with "IEC publication 60063".

#### **Limiting values**

| TYPE | LIMITING VO | (V) LIMITING POW |                  |  |
|------|-------------|------------------|------------------|--|
|      | DC          | RMS              | \ \(\mathbf{w}\) |  |
| VR25 | 1600        | 1150             | 0.25             |  |

#### Note

1. The maximum voltage that may be continuously applied to the resistor element, see "IEC publication 60115-1".

The maximum permissible hot-spot temperature is 155 °C.

#### **DERATING**

The power that the resistor can dissipate depends on the operating temperature; see Fig.1.

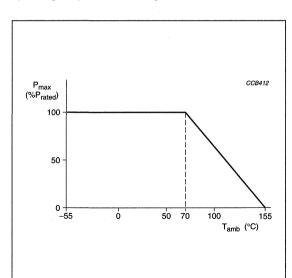



Fig.1 Maximum dissipation (P<sub>max</sub>) in percentage of rated power as a function of the ambient temperature (T<sub>amb</sub>).

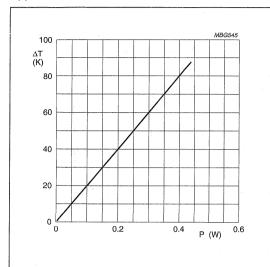
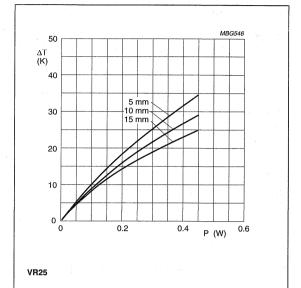

#### PULSE LOADING CAPABILITY



Fig.2 Maximum allowed peak pulse voltage in accordance with "IEC 60065 chapter 14.1"; 50 discharges from a 1 nF capacitor charged to  $\hat{V}_{max}$ ; 12 discharges/minute (drift  $\Delta$ R/R  $\leq$  1%).


VR25

#### **Application information**



VR25

Fig.3 Hot spot temperature rise ( $\Delta T$ ) as a function of dissipated power.



Temperature rise ( $\Delta T$ ) at the lead end

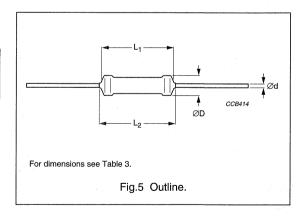
(soldering point) as a function of dissipated

power at various lead lengths after mounting.

#### **MECHANICAL DATA**

#### Mass per 100 units

| TYPE | MASS<br>(g) |  |
|------|-------------|--|
| VR25 | 25          |  |


#### Marking

The nominal resistance and tolerance are marked on the resistor using four or five coloured bands in accordance with IEC publication 60062 "Colour codes for fixed resistors".

Yellow and grey are used instead of gold and silver because metal particles in the lacquer could affect high-voltage properties.

### Outlines

The length of the body ( $L_1$ ) is measured by inserting the leads into holes of two identical gauge plates and moving these plates parallel to each other until the resistor body is clamped without deformation ("IEC publication 60294").



**Table 3** Resistor type and relevant physical dimensions; see Fig.5

| TYPE | ØD<br>MAX.<br>(mm) | L <sub>1</sub><br>MAX.<br>(mm) | L <sub>2</sub><br>MAX.<br>(mm) | Ød<br>(mm) |
|------|--------------------|--------------------------------|--------------------------------|------------|
| VR25 | 2.5                | 6.5                            | 7.5                            | 0.58 ±0.05 |

Fig.4

VR25

#### **TESTS AND REQUIREMENTS**

Essentially all tests are carried out in accordance with the schedule of "IEC publication 60115-1", category LCT/UCT/56 (rated temperature range: Lower Category Temperature, Upper Category Temperature; damp heat, long term, 56 days). The testing also covers the requirements specified by EIA and EIAJ.

The tests are carried out in accordance with IEC publication 60068, "Recommended basic climatic and mechanical robustness testing procedure for electronic components" and under standard atmospheric conditions according to "IEC 60068-1", subclause 5.3.

Unless otherwise specified the following values apply:

Temperature: 15 °C to 35 °C Relative humidity: 45% to 75% Air pressure: 86 kPa to 106 kPa (860 mbar to 1060 mbar).

In Table 4 the tests and requirements are listed with reference to the relevant clauses of "IEC publications 60115-1 and 60068", a short description of the test procedure is also given. In some instances deviations from the IEC recommendations were necessary for our method of specifying.

All soldering tests are performed with mildly activated flux.

Table 4 Test procedures and requirements

| IEC<br>60115-1<br>CLAUSE | IEC<br>60068<br>TEST<br>METHOD | TEST                                             | PROCEDURE                                                                                                            | REQUIREMENTS                                              |
|--------------------------|--------------------------------|--------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|
| 4.16                     | U                              | robustness of terminations:                      |                                                                                                                      |                                                           |
| 4.16.2                   | Ua                             | tensile all samples                              | Ø0.6 mm; load 10 N; 10 s                                                                                             | number of failures $<10 \times 10^{-6}$                   |
| 4.16.3                   | Ub                             | bending half number of samples                   | Ø0.6 mm; load 5 N; 4 × 90°                                                                                           | number of failures $<10 \times 10^{-6}$                   |
| 4.16.4                   | Uc                             | torsion other half of samples                    | 3 × 360° in opposite directions                                                                                      | no damage $\Delta R/R$ max.: $\pm 0.5\% + 0.05 \Omega$    |
| 4.17                     | Ta                             | solderability                                    | 2 s; 235 °C; flux 600                                                                                                | good tinning; no damage                                   |
| 4.18                     | Tb                             | resistance to soldering heat                     | thermal shock: 3 s; 350 °C;<br>6 mm from body                                                                        | $\Delta$ R/R max.: $\pm 0.5\% + 0.05 \Omega$              |
| 4.19                     | Na                             | rapid change of temperature                      | 30 minutes at -55 °C and 30 minutes at +155 °C; 5 cycles                                                             | $\Delta$ R/R max.: ±0.5% + 0.05 $\Omega$                  |
| 4.20                     | Eb                             | bump                                             | $3 \times 1500$ bumps in 3 directions; 40 g                                                                          | no damage $\Delta R/R$ max.: $\pm 0.5\% + 0.05 \Omega$    |
| 4.22                     | Fc                             | vibration                                        | frequency 10 to 500 Hz;<br>displacement 1.5 mm or<br>acceleration 10 g; 3 directions;<br>total 6 hours (3 × 2 hours) | no damage<br>$\Delta R/R$ max.: $\pm 0.5\% + 0.05 \Omega$ |
| 4.23                     |                                | climatic sequence:                               |                                                                                                                      |                                                           |
| 4.23.2                   | Ba                             | dry heat                                         | 16 hours; 155 °C                                                                                                     |                                                           |
| 4.23.3                   | Db                             | damp heat (accelerated)<br>1 <sup>st</sup> cycle | 24 hours; 55 °C; 90 to 100% RH                                                                                       |                                                           |
| 4.23.4                   | Aa                             | cold                                             | 2 hours; −55 °C                                                                                                      |                                                           |
| 4.23.5                   | М                              | low air pressure                                 | 2 hours; 8.5 kPa; 15 to 35 °C                                                                                        |                                                           |
| 4.23.6                   | Db                             | damp heat (accelerated)                          | 5 days; 55 °C; 95 to 100% RH                                                                                         | $R_{ins}$ min.: $10^3$ $M\Omega$                          |
|                          |                                | remaining cycles                                 |                                                                                                                      | $\Delta$ R/R max.: $\pm 1.5\% + 0.1 \Omega$               |

VR25

| IEC<br>60115-1<br>CLAUSE | IEC<br>60068<br>TEST<br>METHOD | TEST                        | PROCEDURE                                                                                                                                    | REQUIREMENTS                                 |
|--------------------------|--------------------------------|-----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|
| 4.24.2                   | Ca                             | damp heat<br>(steady state) | 56 days; 40 °C; 90 to 95% RH;<br>dissipation 0.01 P <sub>n</sub> ;<br>limiting voltage 100 V (DC)                                            | $\Delta$ R/R max.: $\pm 1.5\% + 0.1 \Omega$  |
| 4.25.1                   |                                | endurance                   | 1000 hours at 70 °C; P <sub>n</sub> or V <sub>max</sub>                                                                                      | $\Delta$ R/R max.: $\pm 1.5\% + 0.1 \Omega$  |
| 4.8.4                    |                                | temperature coefficient     | between $-55$ °C and $+155$ °C (TC $\times$ 10 <sup>-6</sup> /K)                                                                             | ≤±200                                        |
| 4.7                      |                                | voltage proof on insulation | 700 V (RMS) during 1 minute;<br>V-block method                                                                                               | no breakdown                                 |
| 4.12                     |                                | noise                       | "IEC publication 60195"                                                                                                                      | max. 5 μV/V                                  |
| 4.6.1.1                  |                                | insulation resistance       | 500 V (DC) during 1 minute;<br>V-block method                                                                                                | $R_{ins}$ min.: $10^4$ $M\Omega$             |
| 4.13                     |                                | short time overload         | room temperature;<br>dissipation $6.25 \times P_n$ (voltage not<br>more than $2 \times$ limiting voltage);<br>10 cycles; 5 s on and 45 s off | $\Delta$ R/R max.: $\pm 0.5\% + 0.05 \Omega$ |

**VR37** 

#### **FEATURES**

- These resistors meet the safety requirements of:
  - "UL1676" (range 510 k $\Omega$  to 11 M $\Omega$ ) "EN60065"
  - "BS60065" (U.K.)
  - "NFC 92-130" (France)
  - "VDE 0860" (Germany)
- · High pulse loading capability
- · Small size.

#### **APPLICATIONS**

- Where high resistance, high stability and high reliability at high voltage are required
- Safety component in combination with high voltage
- · White goods
- · High humidity environment
- · Power supplies.

#### DESCRIPTION

A metal glazed film is deposited on a high grade ceramic body. After a helical groove has been cut in the resistive layer, tinned electrolytic copper wires are welded to the end-caps. The resistors are coated with a light blue lacquer which provides electrical, mechanical, and climatic protection.

The encapsulation is resistant to all cleaning solvents in accordance with "MIL-STD 202E, method 215" and "IEC 60068-2-45".

#### QUICK REFERENCE DATA

| DESCRIPTION                                      | VALUE                                               |
|--------------------------------------------------|-----------------------------------------------------|
| Resistance range                                 | 100 kΩ to 33 MΩ; note 1                             |
| Resistance tolerance and series                  | ±1%: E24/E96 series;                                |
|                                                  | ±5%: E24 series                                     |
| Maximum dissipation at $T_{amb} = 70  ^{\circ}C$ | 0.5 W                                               |
| Thermal resistance, R <sub>th</sub>              | 120 K/W                                             |
| Temperature coefficient                          | $\leq \pm 200 \times 10^{-6} / K$                   |
| Maximum permissible voltage:                     |                                                     |
| DC                                               | 3500 V                                              |
| RMS                                              | 2500 V                                              |
| Dielectric withstanding voltage of               | 700 V                                               |
| the insulation for 1 minute                      | 150 00 445 4B                                       |
| Basic specifications                             | IEC 60115-1B                                        |
| Safety requirements                              | UL1676 (510 k $\Omega$ to 11 M $\Omega$ );          |
|                                                  | EN60065; BS60065; VDE 0860;                         |
|                                                  | NFC 92-130                                          |
| Climatic category (IEC 60068)                    | 55/155/56                                           |
| Stability after:                                 |                                                     |
| load (1000 hours)                                | $\Delta$ R/R max.: ±1.5% + 0.1 $\Omega$ ; typ. 0.5% |
| accelerated damp heat test (6 days)              | $\Delta$ R/R max.: ±1.5% + 0.1 $\Omega$ ; typ. 0.5% |
| long term damp heat test (56 days)               | $\Delta$ R/R max.: ±1.5% + 0.1 $\Omega$ ; typ. 0.5% |
| Noise                                            | max. 2.5 μV/V; typ. 0.5                             |

#### Note

1. Values up to 100 M $\Omega$  are available upon request.

1998 Aug 28 97

**VR37** 

#### ORDERING INFORMATION

Table 1 Ordering code indicating resistor type and packaging

|         |                       |             | ORDERING CODE 2322 242 |                      |  |
|---------|-----------------------|-------------|------------------------|----------------------|--|
| TYPE    | TAPE<br>WIDTH<br>(mm) | TOL.<br>(%) | BANDOLIER IN AMMOPACK  | BANDOLIER<br>ON REEL |  |
|         |                       | 1000 units  | 5000 units             |                      |  |
| VDOZ    | F0                    | ±1          | 8                      |                      |  |
| VR37 52 | ±5                    | 13          | 23                     |                      |  |

### Ordering code (12NC)

- The resistors have a 12-digit ordering code starting with 2322 242
- The subsequent: first digit for 1% tolerance products (E24 and E96 series) or 2 digits for 5% (E24 series) indicate the resistor type and packaging; see Table 1.
- The remaining digits indicate the resistance value:
  - The first 3 digits for 1% or 2 digits for 5% tolerance products indicate the resistance value.
  - The last digit indicates the resistance decade in accordance with Table 2.

Table 2 Last digit of 12NC

| RESISTANCE<br>DECADE | LAST DIGIT |
|----------------------|------------|
| 100 to 976 kΩ        | 4          |
| 1 to 9.76 MΩ         | 5          |
| ≥10 MΩ               | . 6        |

#### **ORDERING EXAMPLE**

The ordering code for a VR37, resistor value 7.5  $M\Omega$ , 5% tolerance, supplied on a bandolier of 1000 units in ammopack, is: 2322 242 13755.

**VR37** 

#### **FUNCTIONAL DESCRIPTION**

#### **Product characterization**

Standard values of nominal resistance are taken from the E96/E24/E12 series for resistors with a tolerance of ±1% or 5%. The values of the E96/E24 series are in accordance with "IEC publication 60063".

#### **Limiting values**

| TYPE | LIMITING Y | LIMITING POWER (W) |                |
|------|------------|--------------------|----------------|
|      | DC         | RMS                | . ( <b>vv)</b> |
| VR37 | 3500       | 2500               | 0.5            |

#### Note

1. The maximum voltage that may be continuously applied to the resistor element, see "IEC publication 60115-1".

The maximum permissible hot-spot temperature is 155 °C.

#### **DERATING**

The power that the resistor can dissipate depends on the operating temperature; see Fig.1.

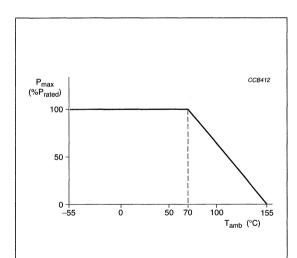



Fig.1 Maximum dissipation ( $P_{max}$ ) in percentage of rated power as a function of the ambient temperature ( $T_{amb}$ ).

#### PULSE LOADING CAPABILITY

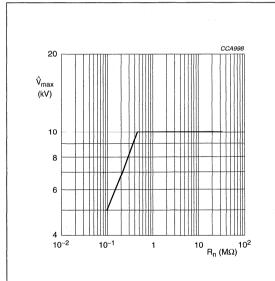
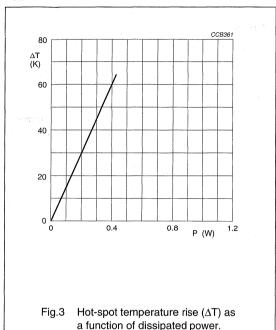




Fig.2 Maximum allowed peak pulse voltage in accordance with "IEC 60065 chapter 14.1"; 50 discharges from a 1 nF capacitor charged to  $\hat{V}_{max}$ ; 12 discharges/minute (drift  $\Delta R/R \leq 1\%$ ).

**VR37** 

### **Application information**



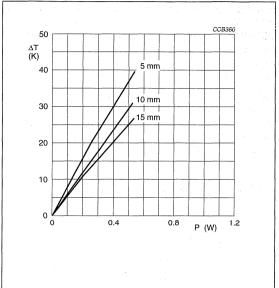
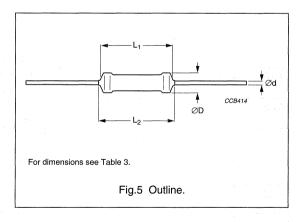



Fig.4 Temperature rise ( $\Delta T$ ) at the lead end (soldering point) as a function of dissipated power at various lead lengths after mounting.

#### **MECHANICAL DATA**

#### Mass per 100 units

| TYPE | MASS<br>(g) |  |
|------|-------------|--|
| VR37 | 48          |  |


#### Marking

The nominal resistance and tolerance are marked on the resistor using four or five coloured bands in accordance with IEC publication 60062 "Colour codes for fixed resistors".

Yellow and grey are used instead of gold and silver because metal particles in the lacquer could affect high-voltage properties.

#### **Outlines**

The length of the body ( $L_1$ ) is measured by inserting the leads into holes of two identical gauge plates and moving these plates parallel to each other until the resistor body is clamped without deformation ("IEC publication 60294").



**Table 3** Resistor type and relevant physical dimensions; see Fig.5

| TYPE | ØD<br>MAX.<br>(mm) | L <sub>1</sub><br>MAX.<br>(mm) | L <sub>2</sub><br>MAX.<br>(mm) | Ød<br>(mm) |
|------|--------------------|--------------------------------|--------------------------------|------------|
| VR37 | 4.0                | 9.0                            | 10.0                           | 0.7 ±0.03  |

VR37

#### **TESTS AND REQUIREMENTS**

Essentially all tests are carried out in accordance with the schedule of "IEC publication 60115-1", category LCT/UCT/56 (rated temperature range: Lower Category Temperature, Upper Category Temperature; damp heat, long term, 56 days). The testing also covers the requirements specified by EIA and EIAJ.

The tests are carried out in accordance with IEC publication 60068, "Recommended basic climatic and mechanical robustness testing procedure for electronic components" and under standard atmospheric conditions according to "IEC 60068-1", subclause 5.3.

Unless otherwise specified the following values apply:

Temperature: 15 °C to 35 °C Relative humidity: 45% to 75% Air pressure: 86 kPa to 106 kPa (860 mbar to 1060 mbar).

In Table 4 the tests and requirements are listed with reference to the relevant clauses of "IEC publications 60115-1 and 60068", a short description of the test procedure is also given. In some instances deviations from the IEC recommendations were necessary for our method of specifying.

All soldering tests are performed with mildly activated flux.

Table 4 Test procedures and requirements

| IEC<br>60115-1<br>CLAUSE | IEC<br>60068<br>TEST<br>METHOD | TEST                                     | PROCEDURE                                                                                                            | REQUIREMENTS                                                           |
|--------------------------|--------------------------------|------------------------------------------|----------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|
| 4.16                     | U                              | robustness of terminations:              |                                                                                                                      |                                                                        |
| 4.16.2                   | Ua                             | tensile all samples                      | Ø0.7 mm; load 10 N; 10 s                                                                                             | number of failures $<10 \times 10^{-6}$                                |
| 4.16.3                   | Ub                             | bending half number of samples           | Ø0.7 mm; load 5 N; 4 × 90°                                                                                           | number of failures $<10 \times 10^{-6}$                                |
| 4.16.4                   | Uc                             | torsion other half of samples            | 3 × 360° in opposite directions                                                                                      | no damage $\Delta$ R/R max.: ±0.5% + 0.05 $\Omega$                     |
| 4.17                     | Та                             | solderability                            | 2 s; 235 °C; flux 600                                                                                                | good tinning; no damage                                                |
| 4.18                     | Tb                             | resistance to soldering heat             | thermal shock: 3 s; 350 °C;<br>6 mm from body                                                                        | $\Delta$ R/R max.: ±0.5% + 0.05 Ω                                      |
| 4.19                     | Na                             | rapid change of temperature              | 30 minutes at –55 °C and 30 minutes at +155 °C; 5 cycles                                                             | $\Delta$ R/R max.: ±0.5% + 0.05 Ω                                      |
| 4.20                     | Eb                             | bump                                     | $3 \times 1500$ bumps in 3 directions; 40 g                                                                          | no damage $\Delta$ R/R max.: ±0.5% + 0.05 $\Omega$                     |
| 4.22                     | Fc                             | vibration                                | frequency 10 to 500 Hz;<br>displacement 1.5 mm or<br>acceleration 10 g; 3 directions;<br>total 6 hours (3 × 2 hours) | no damage $\Delta$ R/R max.: $\pm 0.5\% + 0.05 \Omega$                 |
| 4.23                     |                                | climatic sequence:                       |                                                                                                                      |                                                                        |
| 4.23.2                   | Ва                             | dry heat                                 | 16 hours; 155 °C                                                                                                     |                                                                        |
| 4.23.3                   | Db                             | damp heat (accelerated) 1st cycle        | 24 hours; 55 °C; 90 to 100% RH                                                                                       |                                                                        |
| 4.23.4                   | Aa                             | cold                                     | 2 hours; –55 °C                                                                                                      |                                                                        |
| 4.23.5                   | М                              | low air pressure                         | 2 hours; 8.5 kPa; 15 to 35 °C                                                                                        |                                                                        |
| 4.23.6                   | Db                             | damp heat (accelerated) remaining cycles | 5 days; 55 °C; 95 to 100% RH                                                                                         | $R_{ins}$ min.: 10 <sup>3</sup> MΩ<br>$\Delta R/R$ max.: ±1.5% + 0.1 Ω |

VR37

| IEC<br>60115-1<br>CLAUSE | IEC<br>60068<br>TEST<br>METHOD | TEST                        | PROCEDURE                                                                                                                                    | REQUIREMENTS                       |
|--------------------------|--------------------------------|-----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|
| 4.24.2                   | Ca                             | damp heat<br>(steady state) | 56 days; 40 °C; 90 to 95% RH;<br>dissipation 0.01 P <sub>n</sub> ;<br>limiting voltage 100 V (DC)                                            | $\Delta$ R/R max.: ±1.5% + 0.1 Ω   |
| 4.25.1                   |                                | endurance                   | 1000 hours at 70 °C; P <sub>n</sub> or V <sub>max</sub>                                                                                      | $\Delta$ R/R max.: ±1.5% + 0.1 Ω   |
| 4.8.4                    |                                | temperature coefficient     | between $-55$ °C and +155 °C (TC $\times$ 10 <sup>-6</sup> /K)                                                                               | ≤±200                              |
| 4.7                      |                                | voltage proof on insulation | 700 V (RMS) during 1 minute;<br>V-block method                                                                                               | no breakdown                       |
| 4.12                     |                                | noise                       | "IEC publication 60195"                                                                                                                      | max. 2.5 μV/V                      |
| 4.6.1.1                  |                                | insulation resistance       | 500 V (DC) during 1 minute;<br>V-block method                                                                                                | $R_{ins}$ min.: 10 <sup>4</sup> MΩ |
| 4.13                     |                                | short time overload         | room temperature;<br>dissipation $6.25 \times P_n$ (voltage not<br>more than $2 \times$ limiting voltage);<br>10 cycles; 5 s on and 45 s off | $\Delta$ R/R max.: ±0.5% + 0.05 Ω  |

**VR68** 

#### **FEATURES**

- These resistors meet the safety requirements of:
  - "UL1676" (range 510 k $\Omega$  to 11 M $\Omega$ ) "EN60065"
  - "BS60065" (U.K.)
  - "NFC 92-130" (France)
  - "VDE 0860" (Germany)
- · High pulse loading capability
- · Small size.

#### **APPLICATIONS**

- Where high resistance, high stability and high reliability at high voltage are required
- Safety component in combination with high voltage
- Picture tubes
- · High voltage bleeders
- · Cascade switches.

#### **DESCRIPTION**

A metal glazed film is deposited on a high grade ceramic body. After a helical groove has been cut in the resistive layer, tinned electrolytic copper wires are welded to the end-caps. The resistors are coated with a light blue lacquer which provides electrical, mechanical, and climatic protection.

The encapsulation is resistant to all cleaning solvents in accordance with "MIL-STD 202E, method 215" and "IEC 60068-2-45".

#### **QUICK REFERENCE DATA**

| DESCRIPTION                                                    | VALUE                                                                  |  |  |
|----------------------------------------------------------------|------------------------------------------------------------------------|--|--|
| Resistance range                                               | 100 kΩ to 68 MΩ; note 1                                                |  |  |
| Resistance tolerance and series                                | ±1%: E24/E96 series;<br>±5%; E24 series                                |  |  |
| Maximum dissipation at T <sub>amb</sub> = 70 °C                | 1 W                                                                    |  |  |
| Thermal resistance, R <sub>th</sub>                            | 70 K/W                                                                 |  |  |
| Temperature coefficient                                        | ≤±200 × 10 <sup>-6</sup> /K                                            |  |  |
| Maximum permissible voltage:                                   |                                                                        |  |  |
| DC                                                             | 10000 V                                                                |  |  |
| RMS                                                            | 7000 V                                                                 |  |  |
| Dielectric withstanding voltage of the insulation for 1 minute | 700 V                                                                  |  |  |
| Basic specifications                                           | IEC 60115-1B                                                           |  |  |
| Safety requirements                                            | UL1676 (510 kΩ to 11 MΩ);<br>EN60065; BS60065; VDE 0860;<br>NFC 92-130 |  |  |
| Climatic category (IEC 60068)                                  | 55/155/56                                                              |  |  |
| Stability after:                                               |                                                                        |  |  |
| load (1000 hours)                                              | $\Delta$ R/R max.: ±1.5% + 0.1 Ω; typ. 1%                              |  |  |
| accelerated damp heat test (6 days)                            | $\Delta$ R/R max.: ±1.5% + 0.1 $\Omega$ ; typ. 1%                      |  |  |
| long term damp heat test (56 days)                             | $\Delta$ R/R max.: ±1.5% + 0.1 $\Omega$ ; typ. 0.5%                    |  |  |
| Noise                                                          | max. 2.5 μV/V; typ. 0.5                                                |  |  |

#### Note

1. Values up to 220  $M\Omega$  are available upon request.

VR68

#### **ORDERING INFORMATION**

Table 1 Ordering code indicating resistor type and packaging

|      | TAPE  | TAPE WIDTH (%) | ORDERING CODE 2322 244 |        |  |
|------|-------|----------------|------------------------|--------|--|
| TYPE | WIDTH |                | BANDOLIER IN AMMOPACK  |        |  |
|      |       |                | 500 units              | 211.11 |  |
| VR68 | 66.7  | ±1             | 8                      |        |  |
| VHOO | 00.7  | ±5             | 13                     |        |  |

### Ordering code (12NC)

- The resistors have a 12-digit ordering code starting with 2322 244
- The subsequent: first digit for 1% tolerance products (E24 and E96 series) or 2 digits for 5% (E24 series) indicate the resistor type and packaging; see Table 1.
- The remaining digits indicate the resistance value:
  - The first 3 digits for 1% or 2 digits for 5% tolerance products indicate the resistance value.
  - The last digit indicates the resistance decade in accordance with Table 2.

Table 2 Last digit of 12NC

| RESISTANCE<br>DECADE | LAST DIGIT |  |
|----------------------|------------|--|
| 100 to 976 kΩ        | 4          |  |
| 1 to 9.76 MΩ         | 5          |  |
| ≥10 MΩ               | 6          |  |

#### ORDERING EXAMPLE

The ordering code for a VR68, resistor value 7.5  $M\Omega$ , 5% tolerance, supplied on a bandolier of 500 units in ammopack, is: 2322 244 13755.

**VR68** 

#### **FUNCTIONAL DESCRIPTION**

#### Product characterization

Standard values of nominal resistance are taken from the E96/E24/E12 series for resistors with a tolerance of  $\pm 1\%$  or 5%. The values of the E96/E24 series are in accordance with "IEC publication 60063".

#### **Limiting values**

| TYPE | LIMITING VOLTAGE <sup>(1)</sup> (V) |      | LIMITING POWER |
|------|-------------------------------------|------|----------------|
|      | DC                                  | RMS  | (W)            |
| VR68 | 10000                               | 7000 | 1.0            |

#### Note

1. The maximum voltage that may be continuously applied to the resistor element, see "IEC publication 60115-1".

The maximum permissible hot-spot temperature is 155 °C.

#### **DERATING**

The power that the resistor can dissipate depends on the operating temperature; see Fig.1.




Fig.1 Maximum dissipation ( $P_{max}$ ) in percentage of rated power as a function of the ambient temperature ( $T_{amb}$ ).

#### PULSE LOADING CAPABILITY

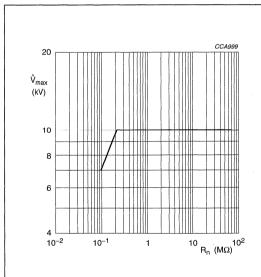
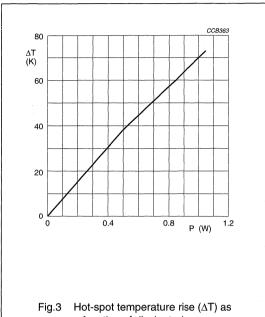




Fig.2 Maximum allowed peak pulse voltage in accordance with "IEC 60065 chapter 14.1"; 50 discharges from a 1 nF capacitor charged to  $\hat{V}_{max}$ ; 12 discharges/minute (drift  $\Delta R/R \leq 1\%$ ).

**VR68** 

### **Application information**



a function of dissipated power.

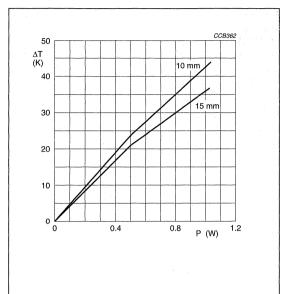
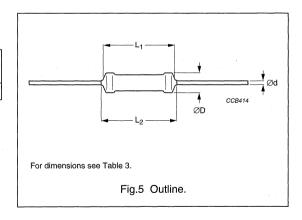



Fig.4 Temperature rise (ΔT) at the lead end (soldering point) as a function of dissipated power at various lead lengths after mounting.

#### **MECHANICAL DATA**

#### Mass per 100 units

| TYPE | MASS<br>(g) |
|------|-------------|
| VR68 | 148         |


### Marking

The nominal resistance and tolerance are marked on the resistor using four or five coloured bands in accordance with IEC publication 60062 "Colour codes for fixed resistors".

Yellow and grey are used instead of gold and silver because metal particles in the lacquer could affect high-voltage properties.

#### **Outlines**

The length of the body  $(L_1)$  is measured by inserting the leads into holes of two identical gauge plates and moving these plates parallel to each other until the resistor body is clamped without deformation ("IEC publication 60294").



**Table 3** Resistor type and relevant physical dimensions; see Fig.5

| TYPE | ØD<br>MAX.<br>(mm) | L <sub>1</sub><br>MAX.<br>(mm) | L <sub>2</sub><br>MAX.<br>(mm) | Ød<br>(mm) |
|------|--------------------|--------------------------------|--------------------------------|------------|
| VR68 | 6.8                | 18.0                           | 19.0                           | 0.8 ±0.03  |

### High ohmic/high voltage resistors

VR68

#### **TESTS AND REQUIREMENTS**

Essentially all tests are carried out in accordance with the schedule of "IEC publication 60115-1", category LCT/UCT/56 (rated temperature range: Lower Category Temperature, Upper Category Temperature; damp heat, long term, 56 days). The testing also covers the requirements specified by EIA and EIAJ.

The tests are carried out in accordance with IEC publication 60068, "Recommended basic climatic and mechanical robustness testing procedure for electronic components" and under standard atmospheric conditions according to "IEC 60068-1", subclause 5.3.

Unless otherwise specified the following values apply:

Temperature: 15 °C to 35 °C Relative humidity: 45% to 75% Air pressure: 86 kPa to 106 kPa (860 mbar to 1060 mbar).

In Table 4 the tests and requirements are listed with reference to the relevant clauses of "IEC publications 60115-1 and 60068"; a short description of the test procedure is also given. In some instances deviations from the IEC recommendations were necessary for our method of specifying.

All soldering tests are performed with mildly activated flux.

Table 4 Test procedures and requirements

| IEC<br>60115-1<br>CLAUSE | IEC<br>60068<br>TEST<br>METHOD | TEST                              | PROCEDURE                                                                                                            | REQUIREMENTS                                             |
|--------------------------|--------------------------------|-----------------------------------|----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|
| 4.16                     | U                              | robustness of terminations:       |                                                                                                                      |                                                          |
| 4.16.2                   | Ua                             | tensile all samples               | Ø0.8 mm; load 10 N; 10 s                                                                                             | number of failures $<10 \times 10^{-6}$                  |
| 4.16.3                   | Ub                             | bending half number of samples    | Ø0.8 mm; load 5 N; 4 × 90°                                                                                           | number of failures $<10 \times 10^{-6}$                  |
| 4.16.4                   | Uc                             | torsion other half of samples     | 3 × 360° in opposite directions                                                                                      | no damage $\Delta$ R/R max.: $\pm 0.5\%$ + 0.05 $\Omega$ |
| 4.17                     | Ta                             | solderability                     | 2 s; 235 °C; flux 600                                                                                                | good tinning; no damage                                  |
| 4.18                     | Tb                             | resistance to soldering heat      | thermal shock: 3 s; 350 °C;<br>6 mm from body                                                                        | $\Delta$ R/R max.: $\pm 0.5\% + 0.05 \Omega$             |
| 4.19                     | Na                             | rapid change of temperature       | 30 minutes at -55 °C and 30 minutes at +155 °C; 5 cycles                                                             | $\Delta$ R/R max.: $\pm 0.5\% + 0.05 \Omega$             |
| 4.20                     | Eb                             | bump                              | $3 \times 1500$ bumps in 3 directions; 40 g                                                                          | no damage $\Delta$ R/R max.: $\pm 0.5\% + 0.05 \Omega$   |
| 4.22                     | Fc                             | vibration                         | frequency 10 to 500 Hz;<br>displacement 1.5 mm or<br>acceleration 10 g; 3 directions;<br>total 6 hours (3 × 2 hours) | no damage $\Delta$ R/R max.: $\pm 0.5\% + 0.05~\Omega$   |
| 4.23                     |                                | climatic sequence:                |                                                                                                                      |                                                          |
| 4.23.2                   | Ва                             | dry heat                          | 16 hours; 155 °C                                                                                                     |                                                          |
| 4.23.3                   | Db                             | damp heat (accelerated) 1st cycle | 24 hours; 55 °C; 90 to 100% RH                                                                                       |                                                          |
| 4.23.4                   | Aa                             | cold                              | 2 hours; –55 °C                                                                                                      |                                                          |
| 4.23.5                   | М                              | low air pressure                  | 2 hours; 8.5 kPa; 15 to 35 °C                                                                                        |                                                          |
| 4.23.6                   | Db                             | damp heat (accelerated)           | 5 days; 55 °C; 95 to 100% RH                                                                                         | $R_{ins}$ min.: $10^3$ $M\Omega$                         |
|                          |                                | remaining cycles                  |                                                                                                                      | $\Delta$ R/R max.: ±1.5% + 0.1 $\Omega$                  |

# High ohmic/high voltage resistors

VR68

| IEC<br>60115-1<br>CLAUSE | TEST |                             | PROCEDURE                                                                                                                                                  | REQUIREMENTS                            |  |  |
|--------------------------|------|-----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|--|--|
| 4.24.2                   | Ca   | damp heat<br>(steady state) | 56 days; 40 °C; 90 to 95% RH;<br>dissipation 0.01 P <sub>n</sub> ;<br>limiting voltage 100 V (DC)                                                          | $\Delta$ R/R max.: ±1.5% + 0.1 Ω        |  |  |
| 4.25.1                   |      | endurance                   | 1000 hours at 70 °C; P <sub>n</sub> or V <sub>max</sub>                                                                                                    | $\Delta$ R/R max.: ±1.5% + 0.1 $\Omega$ |  |  |
| 4.8.4                    |      | temperature coefficient     | between –55 °C and +155 °C (TC × 10 <sup>-6</sup> /K)                                                                                                      | ≤ ±200                                  |  |  |
| 4.7                      |      | voltage proof on insulation | 700 V (RMS) during 1 minute;<br>V-block method                                                                                                             | no breakdown                            |  |  |
| 4.12                     |      | noise                       | "IEC publication 60195"                                                                                                                                    | max. 2.5 μV/V                           |  |  |
| 4.6.1.1                  |      | insulation resistance       | 500 V (DC) during 1 minute;<br>V-block method                                                                                                              | $R_{ins}$ min.: $10^4$ M $\Omega$       |  |  |
| 4.13                     |      | short time overload         | room temperature;<br>dissipation 6.25 × P <sub>n</sub> (voltage not<br>more than 2 × limiting voltage;<br>10000 V max.); 10 cycles;<br>5 s on and 45 s off | $\Delta$ R/R max.: ±0.5% + 0.05 Ω       |  |  |

### LSR37

#### **FEATURES**

- High pulse-loading capability (flashes)
- Good replacement for carbon-composite resistors.

### **APPLICATIONS**

 Application for overload and high voltage pulse hazard circuits (TV-sets, monitors).

#### DESCRIPTION

A metal glazed film is deposited on a high grade ceramic body. After that caps are applied to the rods and electrolytic copper wires are welded to these end caps.

The resistors are coated with a light-blue lacquer which provides electrical, mechanical and climatic protection.

The encapsulation is resistant to all cleaning solvents according to "MIL-STD 202E, method 215" and "IEC 60068-2-45".

# ORDERING INFORMATION Ordering code (12NC)

- The resistors have a 12-digit ordering code staring with 2322 245
- The subsequent 2 digits indicate the resistor type and packaging; see Table 1.
- The remaining digits indicate the resistance value:
  - The first 2 digits indicate the resistance value.
  - The last digit indicates the resistance decade in accordance with Table 2.

#### QUICK REFERENCE DATA

| DESCRIPTION                                                    | VALUE                                 |
|----------------------------------------------------------------|---------------------------------------|
| Resistance range                                               | 900 Ω to 10 kΩ                        |
| Resistance tolerance and series                                | ±10%; ±20%; E12 series                |
| Maximum dissipation at T <sub>amb</sub> = 70 °C                | 0.5 W                                 |
| Thermal resistance, R <sub>th</sub>                            | 120 K/W                               |
| Temperature coefficient                                        | ≤±400 × 10 <sup>-6</sup> /K           |
| Voltage coefficient                                            | ≤±100 × 10 <sup>-6</sup> /V           |
| Maximum permissible voltage                                    | $V = \sqrt{P_n \times R}$             |
| Dielectric withstanding voltage of the insulation for 1 minute | 700 V                                 |
| Basic specifications                                           | IEC 60115-1B                          |
| Climatic category (IEC 60068)                                  | 55/155/56                             |
| Stability after:                                               |                                       |
| load (1000 hours)                                              | $\Delta$ R/R max.: ±3% + 0.1 $\Omega$ |
| climatic test                                                  | $\Delta$ R/R max.: ±3% + 0.1 $\Omega$ |
| soldering                                                      | $\Delta$ R/R max.: ±1% + 0.1 $\Omega$ |
| Noise                                                          | max. 2.5 μV/V                         |

Table 1 Ordering code as function of tolerance and packaging

|        | TOLERANCE | ORDERING CODE 2322 245                                    |    |  |  |  |
|--------|-----------|-----------------------------------------------------------|----|--|--|--|
| TYPE   | (%)       | 1000 units   5000 units   IN AMMOPACK   ON REEL   12   22 |    |  |  |  |
| 1.0007 | ±10       | 12                                                        | 22 |  |  |  |
| LSR37  | ±20       | 11                                                        | 21 |  |  |  |

Table 2 Last digit of 12NC

| RESISTANCE<br>DECADE | LAST DIGIT |
|----------------------|------------|
| 100 to 910 Ω         | 1          |
| 1 to 9.1 kΩ          | 2          |
| 10 kΩ                | 3          |

#### ORDERING EXAMPLE

The ordering code for a LSR37, resistor value 1.5 k $\Omega$ , 10% tolerance, supplied on a bandolier of 1000 units in ammopack, is: 2322 245 12152.

LSR37

#### **FUNCTIONAL DESCRIPTION**

#### **Product characterization**

Standard values of rated resistance (nominal resistance) are taken from the E12 series with a tolerance of 10% or 20%. The values of the E12 series are in accordance with "IEC publication 60063".

The limiting voltage DC is not applicable, because the maximum rated voltage for the maximum  $R_n$ -value of 10 K $\Omega$  at  $P_n$  = 0.5 W is only 70.7 V.

The maximum permissible hot-spot temperature is 155 °C.

#### **DERATING**

The power that the resistor can dissipate depends on the operating temperature; see Fig.1.

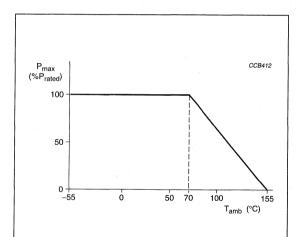



Fig.1 Maximum dissipation ( $P_{max}$ ) in percentage of rated power as a function of the ambient temperature ( $T_{amb}$ ).

### **Limiting values**

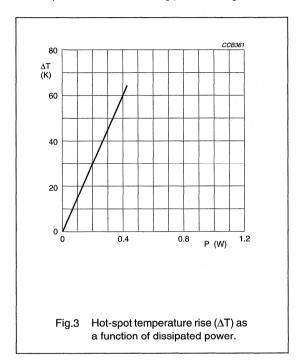
| TYPE  | LIMITING<br>VOLTAGE <sup>(1)</sup><br>(V) | LIMITING POWER (W) |
|-------|-------------------------------------------|--------------------|
| LSR37 | $V = \sqrt{P_n \times R}$                 | 0.5                |

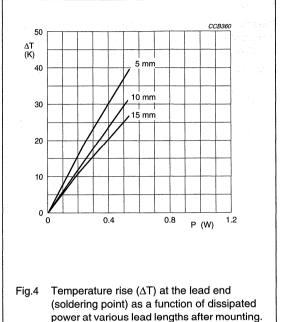
#### Note

 The maximum voltage that may be continuously applied to the resistor element, see "IEC publication 60115-1".

PULSE LOADING CAPABILITY

Data not yet available.


Fig.2 Maximum allowed peak pulse voltage in accordance with "IEC 60065 chapter 14.1"; 50 discharges from a 1 nF capacitor charged to  $\hat{V}_{max}$ ; 12 discharges/minute (drift  $\Delta R/R \leq 1\%$ ).


LSR37

### **Application information**

The resistors with straight leads are suitable for processing on automatic insertion equipment and cutting and bending machines. The minimum pitch for this type is 6e (15.0 mm).

For temperature rise at soldering place see Fig.4.





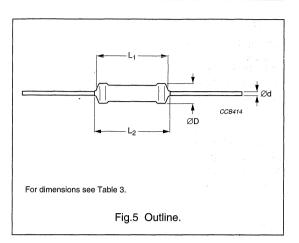
LSR37

#### **MECHANICAL DATA**

#### Mass per 100 units

| TYPE  | MASS<br>(g) |  |
|-------|-------------|--|
| LSR37 | 48          |  |

### Marking


The nominal resistance and tolerance are marked on the resistor using coloured bands in accordance with IEC publication 60062 "Colour codes for fixed resistors".

Three bands are used for 20% tolerance with no indication for the tolerance. Four bands are used for 10% tolerance.

Grey is used instead of silver for 10% and yellow is used instead of gold for 5% because metal particles in the lacquer could affect high-voltage properties.

#### **Outlines**

The length of the body (L<sub>1</sub>) is measured by inserting the leads into holes of two identical gauge plates and moving these plates parallel to each other until the resistor body is clamped without deformation ("IEC publication 60294").



**Table 3** Resistor type and relevant physical dimensions; see Fig.5

| TYPE  | ØD<br>MAX.<br>(mm) | L <sub>1</sub><br>MAX.<br>(mm) | L <sub>2</sub><br>MAX.<br>(mm) | Ød<br>(mm) |
|-------|--------------------|--------------------------------|--------------------------------|------------|
| LSR37 | 4.0                | 9.0                            | 10.0                           | 0.7 ±0.03  |

LSR37

#### **TESTS AND REQUIREMENTS**

Essentially all tests are carried out in accordance with the schedule of "IEC publication 60115-1", category LCT/UCT/56 (rated temperature range: Lower Category Temperature, Upper Category Temperature; damp heat, long term, 56 days). The testing also covers the requirements specified by EIA and EIAJ.

The tests are carried out in accordance with IEC publication 60068, "Recommended basic climatic and mechanical robustness testing procedure for electronic components" and under standard atmospheric conditions according to "IEC 60068-1", subclause 5.3.

Unless otherwise specified the following values apply:

Temperature: 15 °C to 35 °C
Relative humidity: 45% to 75%
Air pressure: 86 kPa to 106 kPa (860 mbar to 1060 mbar).

In Table 4 the tests and requirements are listed with reference to the relevant clauses of "IEC publications 60115-1 and 60068", a short description of the test procedure is also given. In some instances deviations from the IEC recommendations were necessary for our method of specifying.

All soldering tests are performed with mildly activated flux.

Table 4 Test procedures and requirements

| Table 4 Test procedures and requirements |                                |                                                  |                                                                                                                      |                                                                        |  |  |
|------------------------------------------|--------------------------------|--------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|--|--|
| IEC<br>60115-1<br>CLAUSE                 | IEC<br>60068<br>TEST<br>METHOD | TEST                                             | PROCEDURE                                                                                                            | REQUIREMENTS                                                           |  |  |
| 4.16                                     | U                              | robustness of terminations:                      |                                                                                                                      |                                                                        |  |  |
| 4.16.2                                   | Ua                             | tensile all samples                              | Ø0.7 mm; load 10 N; 10 s                                                                                             | number of failures $<$ 10 $\times$ 10 <sup>-6</sup>                    |  |  |
| 4.16.3                                   | Ub                             | bending half number of samples                   | Ø0.7 mm; load 5 N; 4 × 90°                                                                                           | number of failures $<10 \times 10^{-6}$                                |  |  |
| 4.16.4                                   | Uc                             | torsion other half of samples                    | 3 × 360° in opposite directions                                                                                      | no damage $\Delta$ R/R max.: $\pm 1.0\% + 0.10 \Omega$                 |  |  |
| 4.17                                     | Та                             | solderability                                    | 2 s; 235 °C; flux 600                                                                                                | good tinning; no damage                                                |  |  |
| 4.18                                     | Tb                             | resistance to soldering heat                     | thermal shock: 3 s; 350 °C;<br>6 mm from body                                                                        | $\Delta$ R/R max.: ±1.0% + 0.10 $\Omega$                               |  |  |
| 4.19                                     | Na                             | rapid change of temperature                      | 30 minutes at -55 °C and 30 minutes at +155 °C; 5 cycles                                                             | $\Delta$ R/R max.: ±1.0% + 0.10 Ω                                      |  |  |
| 4.20                                     | Eb                             | bump                                             | $3 \times 1500$ bumps in 3 directions; 40 g                                                                          | no damage $\Delta$ R/R max.: $\pm 1.0\% + 0.10 \Omega$                 |  |  |
| 4.22                                     | Fc                             | vibration                                        | frequency 10 to 500 Hz;<br>displacement 1.5 mm or<br>acceleration 10 g; 3 directions;<br>total 6 hours (3 × 2 hours) | no damage $\Delta$ R/R max.: $\pm 1.0\% + 0.10~\Omega$                 |  |  |
| 4.23                                     |                                | climatic sequence:                               |                                                                                                                      |                                                                        |  |  |
| 4.23.2                                   | Ва                             | dry heat                                         | 16 hours; 155 °C                                                                                                     |                                                                        |  |  |
| 4.23.3                                   | Db                             | damp heat (accelerated)<br>1 <sup>st</sup> cycle | 24 hours; 55 °C; 90 to 100% RH                                                                                       |                                                                        |  |  |
| 4.23.4                                   | Aa                             | cold                                             | 2 hours; –55 °C                                                                                                      |                                                                        |  |  |
| 4.23.5                                   | м                              | low air pressure                                 | 2 hours; 8.5 kPa; 15 to 35 °C                                                                                        |                                                                        |  |  |
| 4.23.6                                   | Db                             | damp heat (accelerated) remaining cycles         | 5 days; 55 °C; 95 to 100% RH                                                                                         | $R_{ins}$ min.: 10 <sup>3</sup> MΩ<br>$\Delta$ R/R max.: ±3.0% + 0.1 Ω |  |  |

1998 Aug 28

LSR37

| IEC<br>60115-1<br>CLAUSE | IEC<br>60068<br>TEST<br>METHOD | TEST                                           | PROCEDURE                                                                                                                                 | REQUIREMENTS                                 |  |
|--------------------------|--------------------------------|------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|--|
| 4.24.2                   | Ca                             | damp heat<br>(steady state)                    | 56 days; 40 °C; 90 to 95% RH;<br>dissipation 0.01 P <sub>n</sub> ;<br>limiting voltage 100 V (DC)                                         | $\Delta$ R/R max.: ±3.0% + 0.1 $\Omega$      |  |
| 4.25.1                   |                                | endurance                                      | 1000 hours at 70 °C; P <sub>n</sub> or V <sub>max</sub>                                                                                   | $\Delta$ R/R max.: $\pm 3.0\% + 0.1 \Omega$  |  |
| 4.8.4                    |                                | temperature coefficient                        | between $-55$ °C and $+155$ °C (TC $\times$ 10 <sup>-6</sup> /K)                                                                          | ≤±400                                        |  |
| 4.7                      |                                | voltage proof on insulation                    | 700 V (RMS) during 1 minute;<br>V-block method                                                                                            | no breakdown                                 |  |
| 4.12                     |                                | noise                                          | "IEC publication 60195"                                                                                                                   | max. 2.5 μV/V                                |  |
| 4.6.1.1                  |                                | insulation resistance                          | 500 V (DC) during 1 minute;<br>V-block method                                                                                             | $R_{ins}$ min.: $10^4$ $M\Omega$             |  |
| 4.13                     |                                | short time overload                            | room temperature;<br>dissipation 6.25 × P <sub>n</sub> (voltage not<br>more than 2 × limiting voltage);<br>10 cycles; 5 s on and 45 s off | $\Delta$ R/R max.: $\pm 2.5\% + 0.10 \Omega$ |  |
|                          | . :                            | high voltage pulse 10 kV;<br>1 nF; 50 × 12/min | BEAP test for $R_n > 3.3 \text{ k}\Omega$                                                                                                 | ΔR/R max.: ±10%                              |  |
|                          |                                | 12 kV ESD test;<br>100 pulses                  | ESD contact discharge                                                                                                                     | ΔR/R max.: ±10%                              |  |

### AC01/03/04/05/07/10/15/20

#### **FEATURES**

- High power dissipation in small volume
- High pulse load handling capabilities.

### **APPLICATIONS**

- · Ballast switching
- · Shunt in small electric motors
- · Power supplies.

#### DESCRIPTION

The resistor element is a resistive wire which is wound in a single layer on a ceramic rod. Metal caps are pressed over the ends of the rod. The ends of the resistance wire and the leads are connected to the caps by welding. Tinned copper-clad iron leads with poor heat conductivity are employed permitting the use of relatively short leads to obtain stable mounting without overheating the solder joint.

The resistor is coated with a green silicon cement which is not resistant to aggressive fluxes. The coating is non-flammable, will not drip even at high overloads and is resistant to most commonly used cleaning solvents, in accordance with "MIL-STD-202E, method 215" and "IEC 60068-2-45".

#### **QUICK REFERENCE DATA**

| DECODIDEION                                   |           |                        |        | VAI        | _UE       |        |        | -     |
|-----------------------------------------------|-----------|------------------------|--------|------------|-----------|--------|--------|-------|
| DESCRIPTION                                   | AC01      | AC03                   | AC04   | AC05       | AC07      | AC10   | AC15   | AC20  |
| Resistance range                              | 0.1 Ω     | 0.1 Ω                  | 0.1 Ω  | 0.1 Ω      | 0.1 Ω     | 0.68 Ω | 0.82 Ω | 1.2 Ω |
|                                               | to        | to                     | to     | to         | to        | to     | to     | to    |
|                                               | 2 kΩ      | $4.7~\mathrm{k}\Omega$ | 6.8 kΩ | 8.2 kΩ     | 15 kW     | 27 kΩ  | 39 kΩ  | 56 kΩ |
| Resistance tolerance                          |           |                        |        | ±5%; E2    | 24 series |        |        |       |
| Maximum permissible body temperature          |           |                        |        | 350        | ) °C      |        |        |       |
| Rated dissipation at T <sub>amb</sub> = 40 °C | 1 W       | 3 W                    | 4 W    | 5 W        | 7 W       | 10 W   | 15 W   | 20 W  |
| Rated dissipation at T <sub>amb</sub> = 70 °C | 0.9 W     | 2.5 W                  | 3.5 W  | 4.7 W      | 5.8 W     | 8.4 W  | 12.5 W | 16 W  |
| Climatic category (IEC 60068)                 | 40/200/56 |                        |        |            |           |        |        |       |
| Basic specification                           |           |                        |        | IEC 6      | 0115-1    |        |        |       |
| Stability after:                              |           |                        |        |            |           |        |        |       |
| load, 1000 hours                              |           |                        | ΔR     | /R max.: : | ±5% + 0.  | 1 Ω    |        |       |
| climatic tests                                |           |                        | ΔR     | /R max.: : | ±1% + 0.0 | 05 Ω   |        |       |
| short time overload                           |           |                        | ΔR/    | /R max.: : | ±2% + 0.  | 1 Ω    |        |       |

### AC01/03/04/05/07/10/15/20

#### ORDERING INFORMATION

Table 1 Ordering code indicating resistor type and packaging

| TYPE                | ORDERING CODE 23 |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |  |  |  |  |
|---------------------|------------------|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|--|--|--|--|
|                     | LOOSE IN BOX     | BANDOLIER IN AMMOPACK |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |  |  |  |  |
|                     | STRAIGHT LEADS   | RADIAL                | STRAIGHT LEADS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |  |  |  |  |
|                     | 500 units        | 2500 units            | 500 units                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1 000 units  |  |  |  |  |
| AC01                |                  | 06 328 90(2)          | 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - | 06 328 33    |  |  |  |  |
| AC03 <sup>(1)</sup> |                  | <del>-</del>          | 22 329 03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -            |  |  |  |  |
| AC04 <sup>(1)</sup> | -                | -                     | 22 329 04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | _            |  |  |  |  |
| AC05 <sup>(1)</sup> | _                | _                     | 22 329 05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -            |  |  |  |  |
| AC07 <sup>(1)</sup> |                  | <del>-</del>          | 22 329 07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | _            |  |  |  |  |
| AC10                | _                | -                     | 22 329 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -            |  |  |  |  |
| AC15                | 22 329 15        | <del>-</del>          | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -            |  |  |  |  |
| AC20                | 22 329 20        | <del>-</del>          | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <del>-</del> |  |  |  |  |

#### Notes

- 1. Products with bent leads and loose in box, are available on request.
- 2. Last 3 digits available on request.

### Ordering code (12NC)

- The resistors have a 12-digit ordering code starting with 23
- The subsequent 7 digits indicate the resistor type and packaging; see Table 1.
- The remaining 3 digits indicate the resistance value:
  - The first 2 digits indicate the resistance value.
  - The last digit indicates the resistance decade in accordance with Table 2.

Table 2 Last digit of 12NC

| RESISTANCE<br>DECADE | LAST DIGIT |
|----------------------|------------|
| 0.1 to 0.91 $\Omega$ | 7          |
| 1 to 9.1 Ω           | 8          |
| 10 to 91 Ω           | 9          |
| 100 to 910 Ω         | 1          |
| 1 to 9.1 kΩ          | 2          |
| 10 to 56 kΩ          | 3          |

### ORDERING EXAMPLE

The ordering code of an AC01 resistor, value  $47~\Omega$ , supplied in ammopack of 1000 units is: 2306 328 33479.

Product specifications deviating from the standard values are available on request.

Philips Components Product specification

### Cemented wirewound resistors

### AC01/03/04/05/07/10/15/20

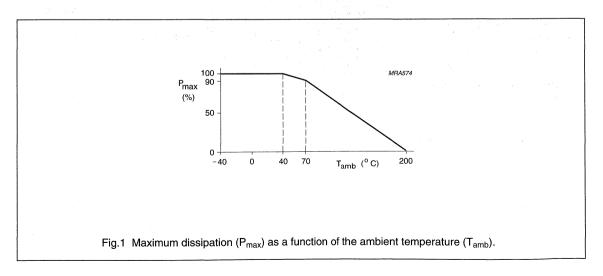
### **FUNCTIONAL DESCRIPTION**

#### **Product characterization**

Standard values of nominal resistance are taken from the E24 series for resistors with a tolerance of  $\pm 5\%$ . The values of the E24 series are in accordance with "IEC publication 60063".

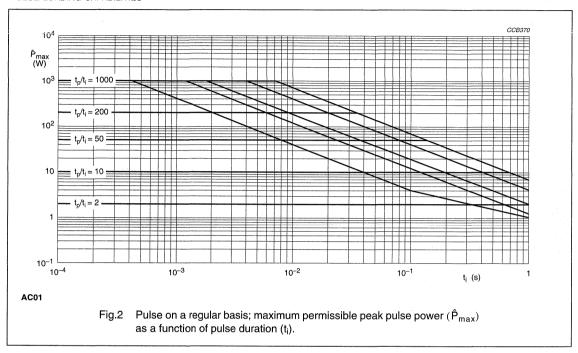
### **Limiting values**

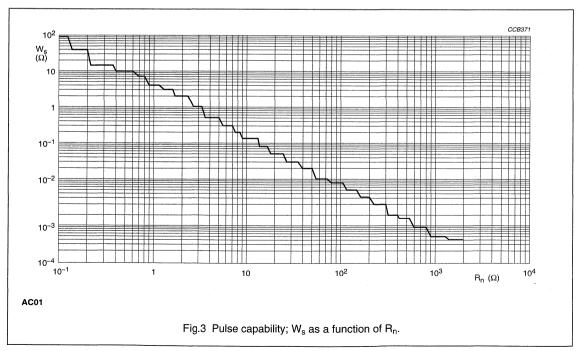
| 7 TY | TYPE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | LIMITING VOLTAGE <sup>(1)</sup> (V) | LIMITING POWER (W)       |                          |  |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|--------------------------|--------------------------|--|
|      | A CONTRACTOR OF THE CONTRACTOR |                                     | T <sub>amb</sub> = 40 °C | T <sub>amb</sub> = 70 °C |  |
| AC01 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     | 1                        | 0.9                      |  |
| AC03 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     | 3                        | 2.5                      |  |
| AC04 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     | 4                        | 3.5                      |  |
| AC05 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     | 5                        | 4.7                      |  |
| AC07 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $V = \sqrt{P_n \times R}$           | 7                        | 5.8                      |  |
| AC10 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     | 10                       | 8.4                      |  |
| AC15 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     | 15                       | 12.5                     |  |
| AC20 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     | 20                       | 16.0                     |  |

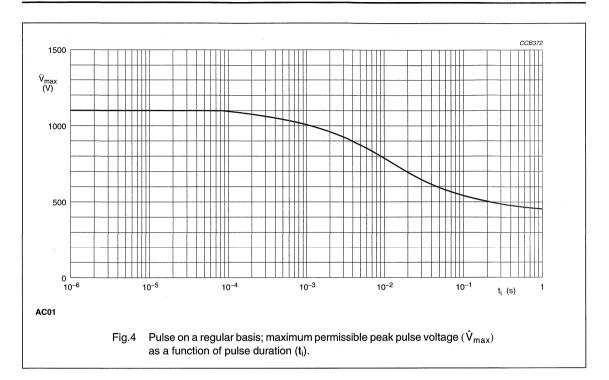

#### Note

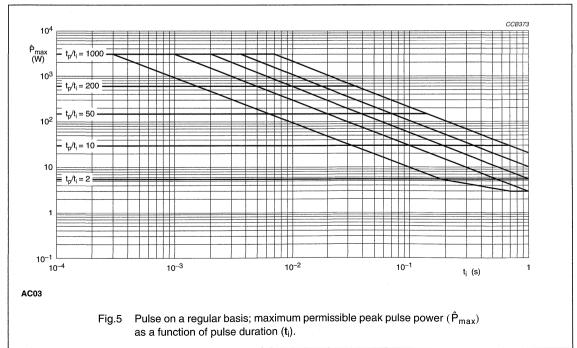
1. The maximum voltage that may be continuously applied to the resistor element, see "IEC publication 60266".

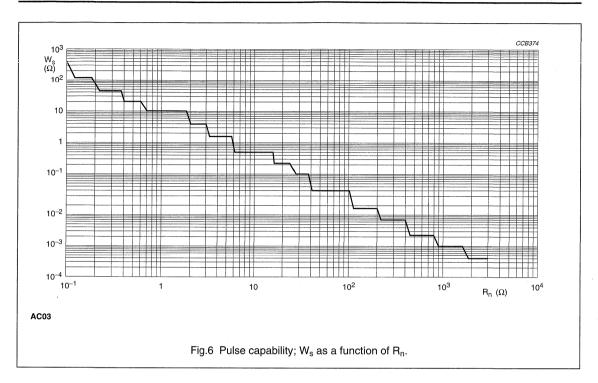
The maximum permissible hot-spot temperature is 350 °C.

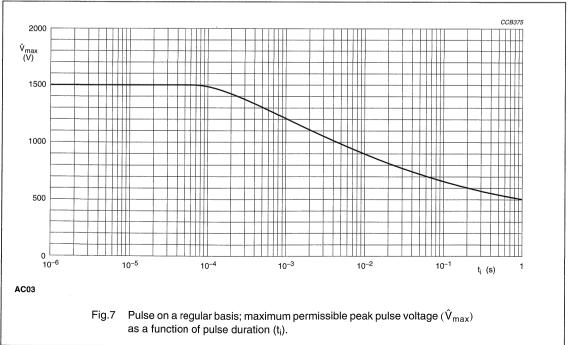

#### **DERATING**

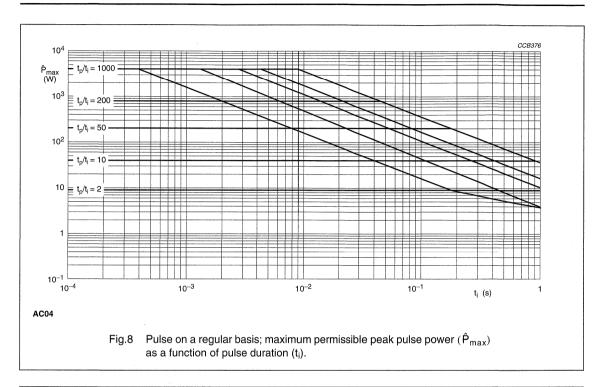

The power that the resistor can dissipate depends on the operating temperature; see Fig.1.

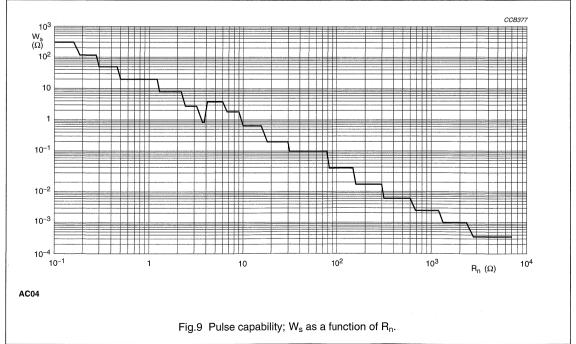


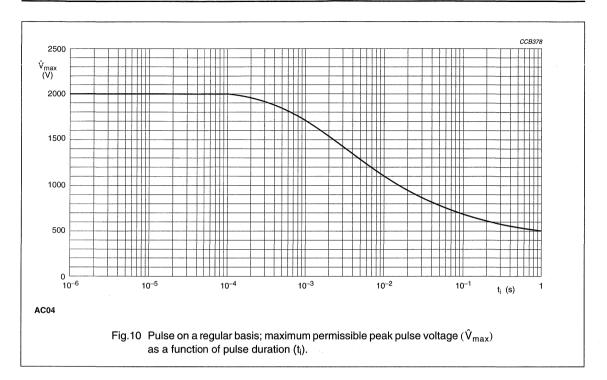


### AC01/03/04/05/07/10/15/20

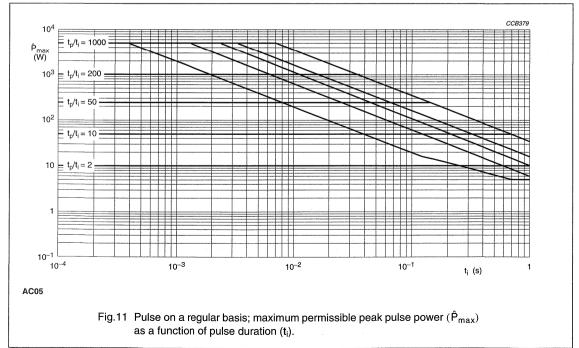

#### PULSE LOADING CAPABILITIES

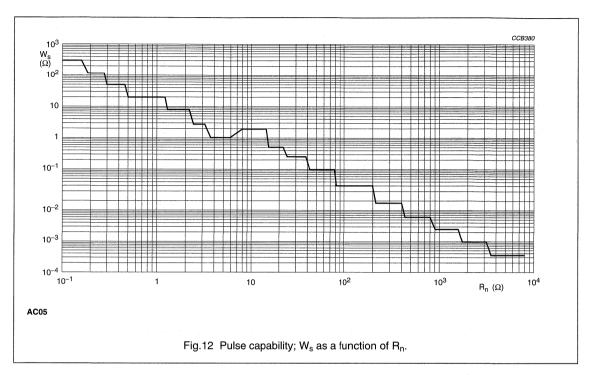


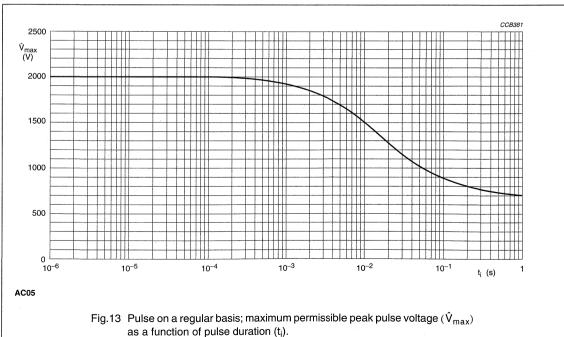



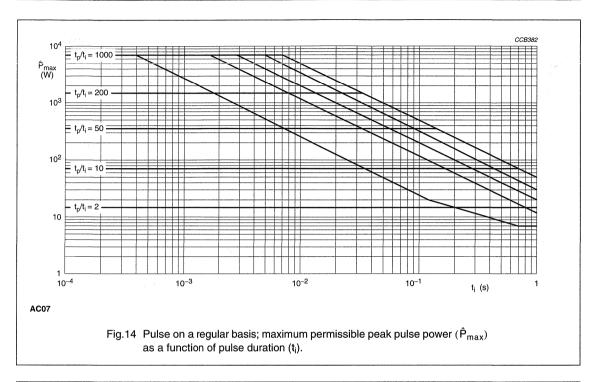



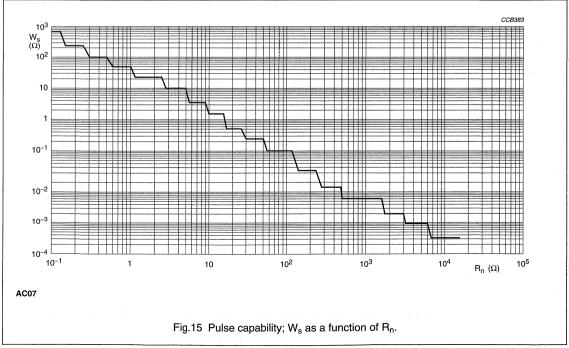



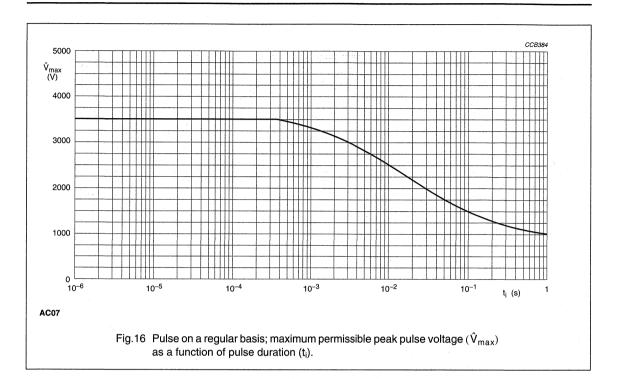



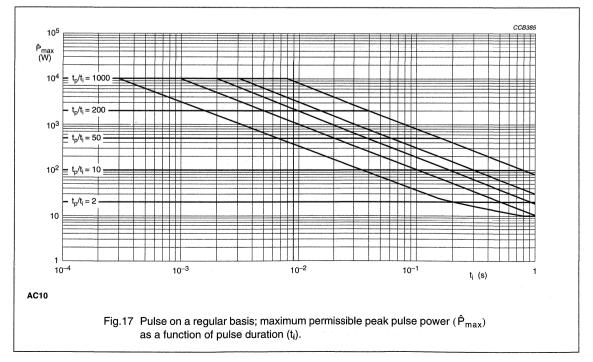



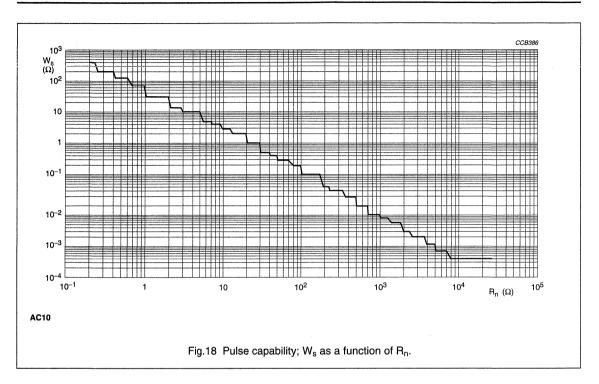



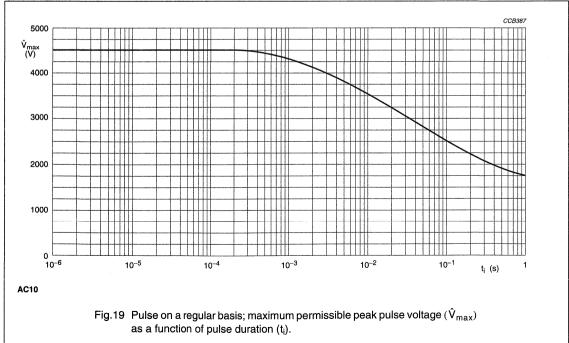



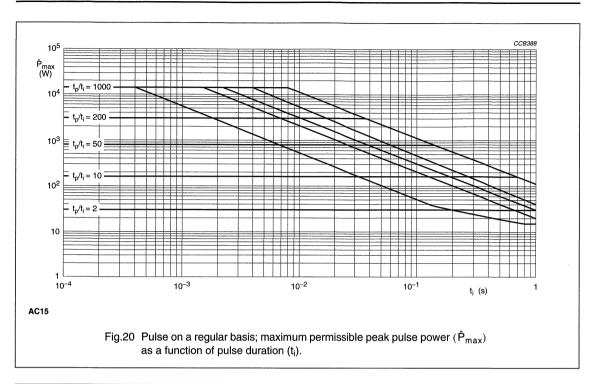



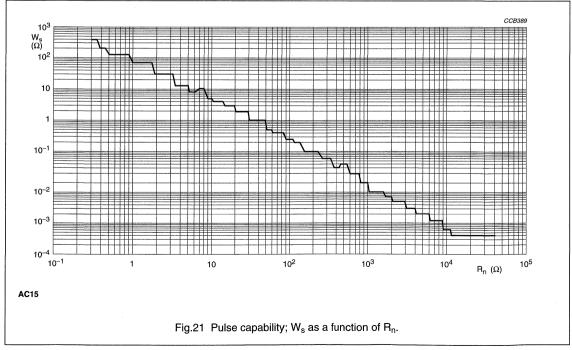



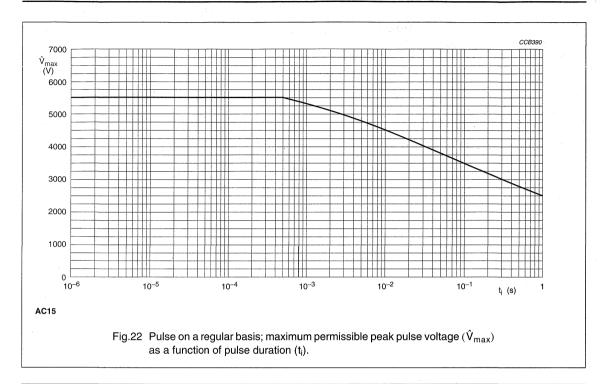



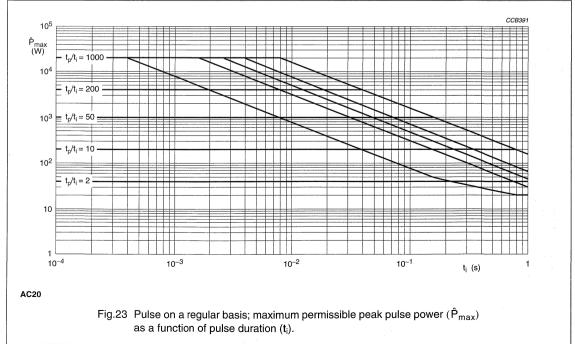



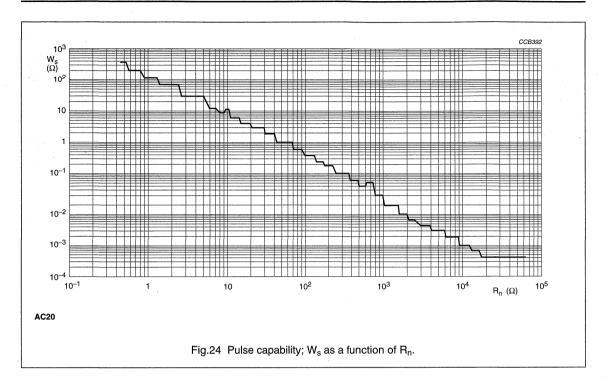



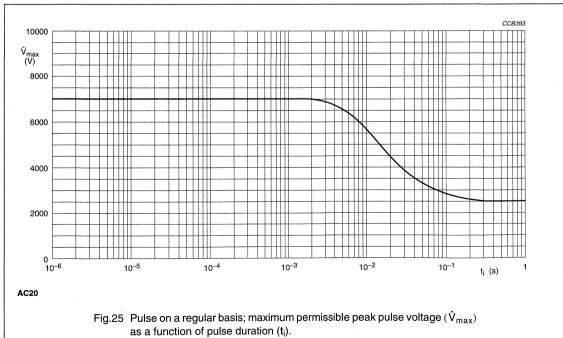




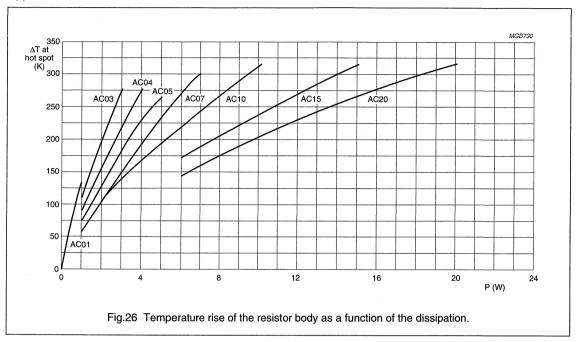





Philips Components Product specification

### Cemented wirewound resistors





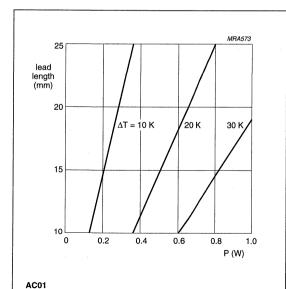
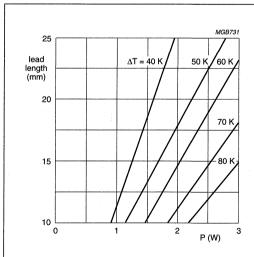


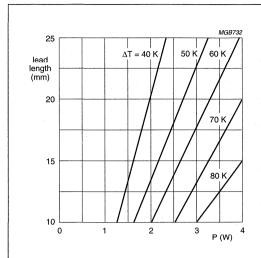



### AC01/03/04/05/07/10/15/20

### **Application information**

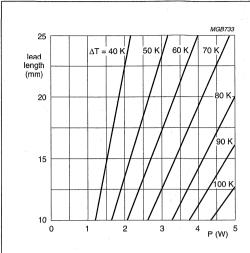




Fig.27 Lead length as a function of the dissipation with the temperature rise at the end of the lead (soldering spot) as a parameter.



AC03


Fig.28 Lead length as a function of the dissipation with the temperature rise at the end of the lead (soldering spot) as a parameter.

### AC01/03/04/05/07/10/15/20



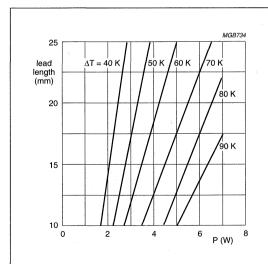

AC04

Fig.29 Lead length as a function of the dissipation with the temperature rise at the end of the lead (soldering spot) as a parameter.



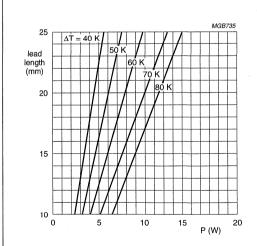

AC05

Fig.30 Lead length as a function of the dissipation with the temperature rise at the end of the lead (soldering spot) as a parameter.



AC07

Fig.31 Lead length as a function of the dissipation with the temperature rise at the end of the lead (soldering spot) as a parameter.



AC10

Fig.32 Lead length as a function of the dissipation with the temperature rise at the end of the lead (soldering spot) as a parameter.

Philips Components Product specification

### Cemented wirewound resistors

### AC01/03/04/05/07/10/15/20

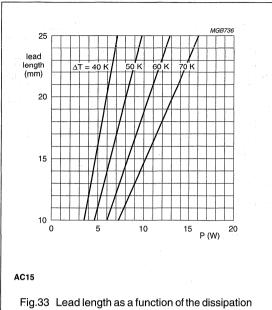



Fig.33 Lead length as a function of the dissipation with the temperature rise at the end of the lead (soldering spot) as a parameter.

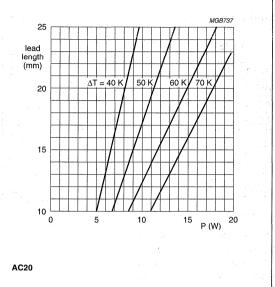



Fig.34 Lead length as a function of the dissipation with the temperature rise at the end of the lead (soldering spot) as a parameter.

#### MOUNTING

The resistor is suitable for processing on cutting and bending machines. **Ensure that the temperature rise of the resistor body does not affect nearby components or materials by conducted or convected heat.** Figure 26 shows the hot-spot temperature rise of the resistor body as a function of dissipated power. Figures 27 to 34 show the lead length as a function of dissipated power and temperature rise.

### AC01/03/04/05/07/10/15/20

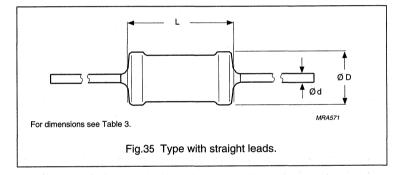
#### **MECHANICAL DATA**

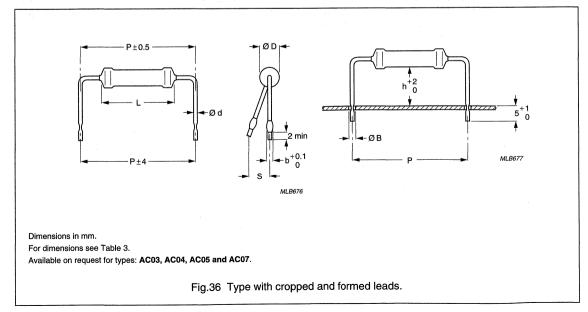
### Mass per 100 units

| TYPE | MASS<br>(g) |
|------|-------------|
| AC01 | 55          |
| AC03 | 110         |
| AC04 | 140         |
| AC05 | 220         |
| AC07 | 300         |
| AC10 | 530         |
| AC15 | 840         |
| AC20 | 1090        |

#### Marking

The resistor is marked with the nominal resistance value, the tolerance on the resistance and the rated dissipation at  $T_{amb} = 40$  °C.


For values up to 910  $\Omega$ , the R is used as the decimal point.


For values of 1 k $\Omega$  and upwards, the letter K is used as the decimal point for the k $\Omega$  indication.

#### **Outlines**

Table 3 Resistor type and relevant physical dimensions; see Figs 35 and 36

| TYPE | ØD<br>MAX.<br>(mm) | L<br>MAX.<br>(mm) | Ød<br>(mm) | b<br>(mm) | h<br>(mm) | P<br>(mm) | S<br>MAX.<br>(mm) | ØB<br>MAX.<br>(mm) |
|------|--------------------|-------------------|------------|-----------|-----------|-----------|-------------------|--------------------|
| AC01 | 4.3                | 10                |            | _         | ·         | _         | _                 |                    |
| AC03 | 5.5                | 13                |            |           |           |           |                   |                    |
| AC04 | 5.7                | 17                |            | 1.3       | 8         | 10e       | 2                 | 1.2                |
| AC05 | 7.5                | 17                | 0.8 ±0.03  | 1.3       |           |           | ٠, ح              | 1.2                |
| AC07 | 7.5                | 25                | 0.6 ±0.03  |           |           | 13e       |                   |                    |
| AC10 | 8                  | 44                |            | _         | _         | -         | . —               | _                  |
| AC15 | 10                 | 51                |            | . –       | _         | _         | _                 | _                  |
| AC20 | 10                 | 67                |            | <u> </u>  | -         | _         |                   |                    |





### AC01/03/04/05/07/10/15/20

#### **TESTS AND REQUIREMENTS**

Essentially all tests are carried out in accordance with the schedule of "*IEC publications 60115-1 and 60115-4*", category 40/200/56 (rated temperature range –40 °C to +200 °C; damp heat, long term, 56 days). The testing also covers the requirements specified by EIA and EIAJ.

The tests are carried out in accordance with IEC publication 60068, "Recommended basic climatic and mechanical robustness testing procedure for electronic components" and under standard atmospheric conditions according to "IEC 60068-1", subclause 5.3.

Unless otherwise specified the following values apply:

Temperature: 15 °C to 35 °C Relative humidity: 45% to 75% Air pressure: 86 kPa to 106 kPa (860 mbar to 1060 mbar).

In Table 4 the tests and requirements are listed with reference to the relevant clauses of "IEC publications 60115-1, 115-4 and 68"; a short description of the test procedure is also given. In some instances deviations from the IEC recommendations were necessary for our method of specifying.

All soldering tests are performed with mildly activated flux.

Table 4 Test procedures and requirements

| IEC<br>60115-1<br>CLAUSE | IEC<br>60068<br>TEST<br>METHOD | TEST                                                                                       | PROCEDURE                                                                                                    | REQUIREMENTS                                                     |
|--------------------------|--------------------------------|--------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|
| Tests in a               | ccordance                      | with the schedule of I                                                                     | EC publication 60115-1                                                                                       |                                                                  |
| 4.15                     |                                | robustness of resistor body                                                                | load 200 ±10 N                                                                                               | no visible damage $\Delta R/R$ max.: $\pm 0.5\%$ + 0.05 $\Omega$ |
| 4.16                     | U<br>Ua<br>Ub                  | robustness of<br>terminations:<br>tensile all samples<br>bending half<br>number of samples | load 10 N; 10 s<br>load 5 N 90°, 180°, 90°                                                                   |                                                                  |
|                          | Uc                             | torsion other half of samples                                                              | 2 × 180° in opposite directions                                                                              | no visible damage $\Delta$ R/R max.: ±0.5% + 0.05 $\Omega$       |
| 4.17                     | Та                             | solderability                                                                              | 2 s; 235 °C; flux 600                                                                                        | good tinning; no damage                                          |
| 4.18                     | Tb                             | resistance to soldering heat                                                               | thermal shock: 3 s; 350 °C;<br>2.5 mm from body                                                              | $\Delta$ R/R max.: ±0.5% + 0.05 $\Omega$                         |
| 4.19                     | 14 (Na)                        | rapid change of temperature                                                                | 30 minutes at -40 °C and<br>30 minutes at +200 °C; 5 cycles                                                  | no visible damage $\Delta$ R/R max.: ±1% + 0.05 $\Omega$         |
| 4.22                     | Fc                             | vibration                                                                                  | frequency 10 to 500 Hz; displacement 0.75 mm or acceleration 10 g; 3 directions; total 6 hours (3 × 2 hours) | no damage $\Delta R/R$ max.: $\pm 0.5\% + 0.05 \Omega$           |
| 4.20                     | Eb                             | bump                                                                                       | 4000 ±10 bumps; 390 m/s <sup>2</sup>                                                                         | no damage<br>$\Delta$ R/R max.: $\pm 0.5\% + 0.05 \Omega$        |

| IEC<br>60115-1<br>CLAUSE | IEC<br>60068<br>TEST<br>METHOD | TEST                                                | PROCEDURE                                                                                | REQUIREMENTS                                                  |
|--------------------------|--------------------------------|-----------------------------------------------------|------------------------------------------------------------------------------------------|---------------------------------------------------------------|
| 4.23                     |                                | climatic sequence:                                  |                                                                                          |                                                               |
| 4.23.2                   | Ba                             | dry heat                                            | 16 hours; 200 °C                                                                         |                                                               |
| 4.23.3                   | Db                             | damp heat<br>(accelerated)<br>1 <sup>st</sup> cycle | 24 hours; 55 °C; 95 to 100% RH                                                           |                                                               |
| 4.23.4                   | Aa                             | cold                                                | 2 hours; –40 °C                                                                          |                                                               |
| 4.23.5                   | М                              | low air pressure                                    | 1 hour; 8.5 kPa; 15 to 35 °C                                                             |                                                               |
| 4.23.6                   | Db                             | damp heat<br>(accelerated)<br>remaining cycles      | 5 days; 55 °C; 95 to 100% RH                                                             | $\Delta$ R/R max.: ±1% + 0.05 $\Omega$                        |
| 4.24.2                   | 3 (Ca)                         | damp heat<br>(steady state)                         | 56 days; 40 °C; 90 to 95% RH;<br>dissipation ≤0.01 P <sub>n</sub>                        | no visible damage $\Delta$ R/R max.: $\pm 1\% + 0.05 \Omega$  |
| 4.8.4.2                  |                                | temperature                                         | at 20/-40/20 °C, 20/200/20 °C:                                                           |                                                               |
|                          |                                | coefficient                                         | R < 10 Ω                                                                                 | TC ≤ ±600 × 10 <sup>-6</sup> /K                               |
|                          |                                |                                                     | R ≥ 10 Ω                                                                                 | $-80 \times 10^{-6} \le TC$<br>$TC \le +140 \times 10^{-6}/K$ |
|                          |                                | temperature rise                                    | horizontally mounted, loaded with P <sub>n</sub>                                         | hot-spot temperature less<br>than maximum body<br>temperature |
| 4.13                     |                                | short time overload                                 | room temperature; dissipation $10 \times P_n$ ; 5 s (voltage not more than 1000 V/25 mm) | $\Delta$ R/R max.: ±2% + 0.1 $\Omega$                         |
| 4.25.1                   |                                | endurance (at 40 °C)                                | 1000 hours loaded with P <sub>n</sub> ;<br>1.5 hours on and 0.5 hours off                | no visible damage $\Delta$ R/R max.: $\pm$ 5% + 0.1 $\Omega$  |
| 4.25.1                   |                                | endurance (at 70 °C)                                | 1000 hours loaded with 0.9P <sub>n</sub> ;<br>1.5 hours on and 0.5 hours off             | no visible damage $\Delta$ R/R max.: $\pm$ 5% + 0.1 $\Omega$  |
| 4.23.2                   | 27 (Ba)                        | endurance at upper category temperature             | 1000 hours; 200 °C; no load                                                              | no visible damage $\Delta$ R/R max.: ±5% + 0.1 $\Omega$       |

| IEC<br>60115-1<br>CLAUSE | IEC<br>60068<br>TEST<br>METHOD | TEST                            | PROCEDURE                                                                              | REQUIREMENTS                                 |
|--------------------------|--------------------------------|---------------------------------|----------------------------------------------------------------------------------------|----------------------------------------------|
| Other test               | s in accord                    | dance with IEC 60115            | clauses and IEC 60068 test method                                                      | 187 July 1                                   |
| 4.29                     | 45 (Xa)                        | component solvent resistance    | 70% 1.1.2 trichlorotrifluoroethane and 30% isopropyl alcohol; H <sub>2</sub> 0         | no visible damage                            |
| 4.18                     | 20 (Tb)                        | resistance to soldering heat    | 10 s; 260 ±5 °C; flux 600                                                              | $\Delta$ R/R max.: $\pm 0.5\% + 0.05 \Omega$ |
| 4.17                     | 20 (Tb)                        | solderability<br>(after ageing) | 16 hours steam or 16 hours at 155 °C; $2\pm0.5$ s in solder at 235 $\pm5$ °C; flux 600 | good tinning (≥95% covered); no damage       |
| 4.5                      |                                | tolerance on                    | applied voltage (±10%):                                                                | R – R <sub>nom</sub> : ±5% max.              |
|                          |                                | resistance                      | R < 10 Ω: 0.1 V                                                                        |                                              |
|                          |                                |                                 | 10 Ω ≤ R < 100 Ω: 0.3 V                                                                |                                              |
|                          |                                |                                 | 100 Ω ≤ R < 1 kΩ: 1 V                                                                  |                                              |
|                          |                                |                                 | 1 kΩ ≤ R < 10 kΩ: 3 V                                                                  |                                              |
|                          |                                |                                 | 10 kΩ ≤ R ≤ 33 kΩ: 10 V                                                                |                                              |

### PAC01/02/03/04/05/06

#### **FEATURES**

- High power dissipation in small volume
- High pulse load handling capabilities.
- TC100.

#### **APPLICATIONS**

 Where power, pulse loading capability and precision needs to be combined.

#### DESCRIPTION

The resistor element is a resistive wire which is wound in a single layer on a ceramic rod. Metal caps are pressed over the ends of the rod. The ends of the resistance wire and the leads are connected to the caps by welding. Tinned copper-clad iron leads with poor heat conductivity are employed permitting the use of relatively short leads to obtain stable mounting without overheating the solder joint.

The resistor is coated with a green silicon cement which is not resistant to aggressive fluxes. The coating is non-inflammable, will not drip even at high overloads and is resistant to most commonly used cleaning solvents, in accordance with "MIL-STD-202E, method 215" and "IEC 60068-2-45".

#### QUICK REFERENCE DATA

| DECODIDATION                                  | VALUE                                          |                     |                     |                       |                    |                    |
|-----------------------------------------------|------------------------------------------------|---------------------|---------------------|-----------------------|--------------------|--------------------|
| DESCRIPTION                                   | PAC01                                          | PAC02               | PAC03               | PAC04                 | PAC05              | PAC06              |
| Resistance range                              | $0.22~\Omega$ to $2.2~\text{k}\Omega$          | 0.10 Ω to<br>3.6 kΩ | 0.10 Ω to<br>4.7 kΩ | 0.10 Ω to<br>8.2 kΩ   | 0.68 Ω to<br>10 kΩ | 0.68 Ω to<br>12 kΩ |
| Resistance tolerance                          |                                                |                     | ±1%; E24/           | E96 series            |                    |                    |
| Maximum permissible body temperature          | 275 °C                                         |                     |                     |                       |                    |                    |
| Rated dissipation at T <sub>amb</sub> = 25 °C | 1 W                                            | 2 W                 | 3 W                 | 4 W                   | 5 W                | 6 W                |
| Temperature coefficient; note 1               |                                                |                     | ≤±100 :             | × 10 <sup>−6</sup> /K |                    |                    |
| Climatic category                             |                                                |                     | 55/20               | 00/56                 |                    |                    |
| Specification based on                        |                                                |                     | IEC 60115-          | 1; MIL-R-26           |                    |                    |
| Stability after:                              |                                                |                     |                     |                       |                    |                    |
| load, 1000 hours                              | $\Delta$ R/R max.: $\pm 0.5\%$ + 0.05 $\Omega$ |                     |                     |                       |                    |                    |
| climatic tests                                | $\Delta$ R/R max.: $\pm 0.5\% + 0.05 \Omega$   |                     |                     |                       |                    |                    |
| short time overload                           |                                                | ,                   | ∆R/R max.: ±        | 0.2% + 0.05 Ω         | 2                  |                    |

#### Note

1. TC30, 50 or 90 is available on request for specific ranges

### PAC01/02/03/04/05/06

### **ORDERING INFORMATION**

Table 1 Ordering code indicating type and packaging

|       |  |  | ORDERIN | NG CODE 2306 327 | a servet and a server server |
|-------|--|--|---------|------------------|------------------------------|
| TYPE  |  |  |         |                  |                              |
|       |  |  |         | 500 units        |                              |
| PAC01 |  |  |         | 5                |                              |
| PAC02 |  |  |         | 0                |                              |
| PAC03 |  |  |         | 1                |                              |
| PAC04 |  |  |         | 2                |                              |
| PAC05 |  |  |         | 3                |                              |
| PAC06 |  |  |         | 4                |                              |

#### Note

1. Radial taped version available on request.

#### Ordering code (12NC)

- The resistors have a 12-digit ordering code starting with 2306 327
- The subsequent first digit indicates the resistor type and packaging; see Table 1.
- The remaining 4 digits indicate the resistance value:
  - The first 3 digits indicate the resistance value.
  - The last digit indicates the resistance decade in accordance with Table 2.

Table 2 Last digit of 12NC

| RESISTANCE<br>DECADE   | LAST DIGIT |
|------------------------|------------|
| 0.10 to 0.976 $\Omega$ | 7          |
| 1 to 9.76 Ω            | 8          |
| 10 to 97.6 Ω           | 9          |
| 100 to 976 Ω           | 1          |
| 1 to 9.76 kΩ           | 2          |
| 10 to 12 kΩ            | 3          |

#### ORDERING EXAMPLE

The ordering code of an PAC02 resistor, value 47  $\Omega$ , supplied in ammopack of 500 units is: 2306 327 04709.

Product specifications deviating from the standard values are available on request.

### PAC01/02/03/04/05/06

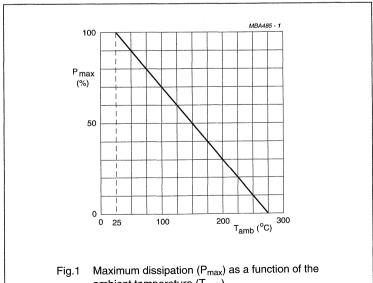
#### **FUNCTIONAL DESCRIPTION**

#### **Product characterization**

Standard values of nominal resistance are taken from the E24/E96 series for resistors with a tolerance of ±1%. The values of the E24/E96 series are in accordance with "IEC publication 60063".

### Limiting values

| TYPE  | LIMITING VOLTAGE <sup>(1)</sup> (V) | LIMITING POWER<br>(W) |
|-------|-------------------------------------|-----------------------|
| PAC01 |                                     | 1                     |
| PAC02 |                                     | 2                     |
| PAC03 | ) v /D v D                          | 3                     |
| PAC04 | $V = \sqrt{P_n \times R}$           | 4                     |
| PAC05 |                                     | 5                     |
| PAC06 |                                     | 6                     |


#### Note

1. The maximum voltage that may be continuously applied to the resistor element, see "IEC publication 60115-1".

The maximum permissible hot-spot temperature is 275 °C.

### **DERATING**

The power that the resistor can dissipate depends on the operating temperature; see Fig.1.



ambient temperature (Tamb).

#### PULSE LOADING CAPABILITY

Detailed pulse loading information is available on request.

### **Application information**

#### MOUNTING

The resistor is suitable for processing on cutting and bending machines.

Ensure that the temperature rise of the resistor body by conducted or convected heat, does not affect nearby components or materials.

### PAC01/02/03/04/05/06

#### **MECHANICAL DATA**

### Mass per 100 units

| ТҮРЕ  | MASS<br>(g) |
|-------|-------------|
| PAC01 | 55          |
| PAC02 | 80          |
| PAC03 | 100         |
| PAC04 | 175         |
| PAC05 | 215         |
| PAC06 | 225         |

### Marking

The resistor is marked with the nominal resistance value, the tolerance on the resistance and the rated dissipation at  $T_{amb} = 25$  °C.

For values up to 910  $\Omega$ , the R is used as the decimal point.

For values of 1 k $\Omega$  and upwards, the letter K is used as the decimal point for the k $\Omega$  indication.

#### Outline

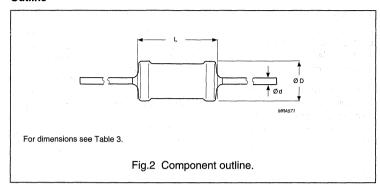



Table 3 Resistor type and relevant physical dimensions; see Fig.2

| TYPE  | ØD<br>MAX.<br>(mm) | L<br>MAX.<br>(mm) | Ød<br>(mm)  |
|-------|--------------------|-------------------|-------------|
| PAC01 | 4.3                | 10                | - 0.8 ±0.03 |
| PAC02 | 5.5                | 13                |             |
| PAC03 | 5.5                | 17                |             |
| PAC04 | 7.5                | 17                |             |
| PAC05 | 7.5                | 23                | 7           |
| PAC06 | 7.5                | 25                | 1           |

### PAC01/02/03/04/05/06

#### **TESTS AND REQUIREMENTS**

Essentially all tests are carried out in accordance with the schedule of "IEC publications 60115-1 and 60115-4", category 55/200/56 (rated temperature range –55 °C to +200 °C; damp heat, long term, 56 days). The testing also covers the requirements specified by EIA and EIAJ.

The tests are carried out in accordance with IEC publication 60068, "Recommended basic climatic and mechanical robustness testing procedure for electronic components" and under standard atmospheric conditions according to "IEC 60068-1", subclause 5.3.

Unless otherwise specified the following values apply:

Temperature: 15 °C to 35 °C Relative humidity: 45% to 75% Air pressure: 86 kPa to 106 kPa (860 mbar to 1060 mbar).

In Table 4 the tests and requirements are listed with reference to the relevant clauses of "IEC publications 60115-1, 60115-4 and 68", a short description of the test procedure is also given. In some instances deviations from the IEC recommendations were necessary for our method of specifying.

Table 4 Test procedures and requirements

| IEC<br>60115-1<br>CLAUSE                                         | IEC<br>60068<br>TEST<br>METHOD | TEST                              | PROCEDURE                                                                                                            | REQUIREMENTS                                                      |  |  |  |  |
|------------------------------------------------------------------|--------------------------------|-----------------------------------|----------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|--|--|--|--|
| Tests in accordance with the schedule of IEC publication 60115-1 |                                |                                   |                                                                                                                      |                                                                   |  |  |  |  |
| 4.15                                                             |                                | robustness of resistor body       | load 200 ±10 N                                                                                                       | no visible damage<br>$\Delta R/R$ max.: $\pm 0.1\% + 0.05 \Omega$ |  |  |  |  |
|                                                                  |                                |                                   | R = 6 mm<br>MBB179                                                                                                   |                                                                   |  |  |  |  |
| 4.16                                                             | U                              | robustness of terminations:       |                                                                                                                      |                                                                   |  |  |  |  |
|                                                                  | Ua                             | tensile all samples               | load 10 N; 10 s                                                                                                      |                                                                   |  |  |  |  |
|                                                                  | Ub                             | bending half<br>number of samples | load 5 N 90°, 180°, 90°                                                                                              |                                                                   |  |  |  |  |
|                                                                  | Uc                             | torsion other half of samples     | 2 × 180° in opposite directions                                                                                      | no visible damage $\Delta R/R$ max.: $\pm 0.1\% + 0.05 \Omega$    |  |  |  |  |
| 4.17                                                             | Та                             | solderability                     | 2 s; 235 °C; flux 600                                                                                                | good tinning; no damage                                           |  |  |  |  |
| 4.18                                                             | Tb                             | resistance to soldering heat      | thermal shock: 3 s; 350 °C;<br>2.5 mm from body                                                                      | $\Delta$ R/R max.: $\pm 0.2\% + 0.05 \Omega$                      |  |  |  |  |
| 4.19                                                             | 14 (Na)                        | rapid change of temperature       | 30 minutes at -55 °C and 30 minutes at +200 °C; 5 cycles                                                             | no visible damage $\Delta R/R$ max.: $\pm 0.5\% + 0.05 \Omega$    |  |  |  |  |
| 4.22                                                             | Fc                             | vibration                         | frequency 10 to 500 Hz; displacement 0.75 mm or acceleration 10 g; 3 directions; total 6 hours ( $3 \times 2$ hours) | no damage<br>$\Delta R/R$ max.: $\pm 0.1\% + 0.05~\Omega$         |  |  |  |  |
| 4.20                                                             | Eb                             | bump                              | 4000 ±10 bumps; 390 m/s <sup>2</sup>                                                                                 | no damage<br>$\Delta R/R$ max.: $\pm 0.1\% + 0.05 \Omega$         |  |  |  |  |

# PAC01/02/03/04/05/06

| IEC<br>60115-1<br>CLAUSE | IEC<br>60068<br>TEST<br>METHOD | TEST                                                | PROCEDURE                                                                 | REQUIREMENTS                                                 |
|--------------------------|--------------------------------|-----------------------------------------------------|---------------------------------------------------------------------------|--------------------------------------------------------------|
| 4.23                     |                                | climatic sequence:                                  |                                                                           | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                        |
| 4.23.2                   | Ва                             | dry heat                                            | 16 hours; 200 °C                                                          |                                                              |
| 4.23.3                   | Db                             | damp heat<br>(accelerated)<br>1 <sup>st</sup> cycle | 24 hours; 55 °C; 95 to 100% RH                                            |                                                              |
| 4.23.4                   | Aa                             | cold                                                | 2 hours; –55 °C                                                           |                                                              |
| 4.23.5                   | М                              | low air pressure                                    | 1 hour; 8.5 kPa; 15 to 35 °C                                              | A Asia                                                       |
| 4.23.6                   | Db                             | damp heat<br>(accelerated)<br>remaining cycles      | 5 days; 55 °C; 95 to 100% RH                                              | $\Delta$ R/R max.: $\pm 0.5\% + 0.05 \Omega$                 |
| 4.24.2                   | 3 (Ca)                         | damp heat<br>(steady state)                         | 56 days; 40 °C; 90 to 95% RH; dissipation ≤0.01 P <sub>n</sub>            | no visible damage $\Delta$ R/R max.: $\pm 1\% + 0.05 \Omega$ |
| 4.8.4.2                  |                                | temperature coefficient                             | at 20/–55/20 °C, 20/200/20 °C<br>(TC × 10 <sup>-6</sup> /K)               | $TC \le \pm 100 \times 10^{-6} / K$                          |
| 4.13                     |                                | short time overload                                 | room temperature;<br>dissipation 10 × P <sub>n</sub> ; 5 s                | $\Delta$ R/R max.: ±0.2% + 0.05 Ω                            |
| 4.25.1                   |                                | endurance (at 25 °C)                                | 1000 hours loaded with P <sub>n</sub> ;<br>1.5 hours on and 0.5 hours off | no visible damage $\Delta$ R/R max.: ±0.5% + 0.05 $\Omega$   |
| 4.23.2                   | 27 (Ba)                        | endurance at upper category temperature             | 1000 hours; 200 °C; no load                                               | no visible damage $\Delta$ R/R max.: $\pm 1\% + 0.05 \Omega$ |

LVR05

# **FEATURES**

 Designed to dissipate high powers in a small volume.

# **APPLICATIONS**

- Where extremely low ohmic values and high stability are essential.
- Low temperature coefficient and low inductance.

### DESCRIPTION

The resistor element is a special resistive material which is shaped to assure maximum power distribution and ohmic stability.

Tinned copper-clad iron leads are welded to the resistive element and the assembly is housed within a rectangular case which is non-flammable.

The encapsulation is resistant to all cleaning solvents according to "MIL-STD 202E, method 215" and "IEC 60068-2-45".

# QUICK REFERENCE DATA

|                                               | T                                     |
|-----------------------------------------------|---------------------------------------|
| DESCRIPTION                                   | VALUE                                 |
| Resistance range; note 1                      | 0.01 to 0.10 Ω                        |
| Resistance tolerance and series; note 2       | ±5%: E24 series                       |
| Rated dissipation at T <sub>amb</sub> = 40 °C | 5 W                                   |
| Temperature coefficient; note 3               | ±200 × 10 <sup>-6</sup> /K            |
| Maximum permissible body temperature          | 275 °C                                |
| Operating temperature                         | –25 °C to +155 °C                     |
| Insulation voltage                            | >2000 V                               |
| Basic specifications                          | IEC 60115-1B                          |
| Climatic category (IEC 60068)                 | 25/155/56                             |
| Stability after:                              |                                       |
| load (1000 hours)                             | $\Delta$ R/R max.: ±5% + 0.1 $\Omega$ |
| climatic test                                 | $\Delta$ R/R max.: ±3% + 0.1 $\Omega$ |
| soldering                                     | $\Delta$ R/R max.: ±2% + 0.1 $\Omega$ |
| Noise                                         | max. 2.5 μV/V                         |

### **Notes**

- 1. Lower values are available on request.
- 2. 1%, 2% and 3% tolerance available on request.
- 3. Special TC available on request.

Philips Components Preliminary specification

# Low ohmic resistor LVR05

# **ORDERING INFORMATION**

Table 1 Ordering code indicating resistance value, tolerance, style and packaging

|       | RESISTANCE |               | CODE NUMBER 2306 288 5     |
|-------|------------|---------------|----------------------------|
| TYPE  | VALUE      | TOLERANCE (%) | 250 UNITS IN CARDBOARD BOX |
|       | (Ω)        | (70)          | AXIAL <sup>(1)</sup>       |
|       | 0.01       |               | 0001                       |
|       | 0.011      |               | 0002                       |
|       | 0.012      |               | 0003                       |
|       | 0.013      |               | 0004                       |
|       | 0.015      | :             | 0005                       |
|       | 0.016      |               | 0006                       |
|       | 0.018      |               | 0007                       |
|       | 0.020      |               | 0008                       |
|       | 0.022      |               | 0009                       |
|       | 0.024      |               | 0011                       |
| ļ     | 0.027      |               | 0012                       |
| LVR05 | 0.030      | 1.5           | 0013                       |
| LVHUD | 0.033      | ±5            | 0014                       |
|       | 0.036      |               | 0015                       |
|       | 0.039      |               | 0016                       |
|       | 0.043      |               | 0017                       |
|       | 0.047      |               | 0018                       |
|       | 0.051      |               | 0019                       |
|       | 0.056      |               | 0021                       |
|       | 0.062      |               | 0022                       |
|       | 0.068      |               | 0023                       |
|       | 0.075      |               | 0024                       |
|       | 0.082      |               | 0025                       |
|       | 0.091      |               | 0026                       |

# Note

1. A radial type is available on request, code number 2306 288 9....

# Ordering example

The ordering code for a LVR05, axial leaded resistor value 0.01  $\Omega$ , 5% tolerance, supplied in cardboard box of 250 units, is: 2306 288 50001.

LVR05

# **FUNCTIONAL DESCRIPTION**

### Product characterization

Standard values of rated resistance (nominal resistance) are taken from the E24 series with a tolerance of 5%. The values of the E24 series are in accordance with "IEC publication 60063".

The maximum permissible hot-spot temperature is 275 °C.

# **Limiting values**

| TYPE  | LIMITING VOLTAGE <sup>(1)</sup> (V) | LIMITING POWER (W) |
|-------|-------------------------------------|--------------------|
| LVR05 | $V = \sqrt{P_n \times R}$           | 5                  |

# Note

1. The maximum voltage that may be continuously applied to the resistor element, see "IEC publication 60115-1".

# **DERATING**

The power that the resistor can dissipate depends on the operating temperature; see Fig.1.

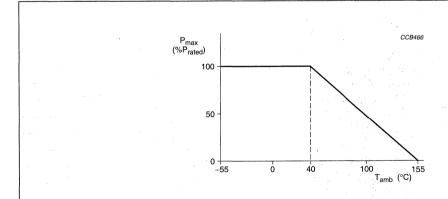



Fig.1 Maximum dissipation (P<sub>max</sub>) in percentage of rated power as a function of the ambient temperature (T<sub>amb</sub>).

LVR05

# **Application information**

For temperature rise at soldering point see Fig.2.

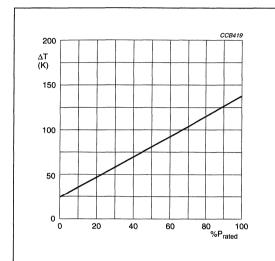



Fig.2 Temperature rise ( $\Delta T$ ) at the lead end (soldering point) as a function of dissipated power measured at points C; see Fig.4.

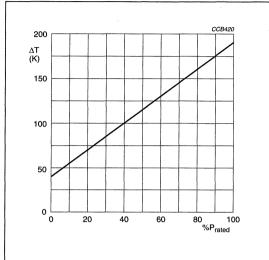



Fig.3 Temperature rise of the resistor body  $(\Delta T)$  as a function of dissipated power.

LVR05

# **MECHANICAL DATA**

# Marking

The nominal resistance, tolerance on the resistance, rated dissipation at 40 °C and the production date are printed on the resistor body. The 'R' is used as a decimal point.

# Mass per 100 units

| TYPE  | MASS |  |
|-------|------|--|
|       | (g)  |  |
| LVR05 | 350  |  |

# **Outlines**



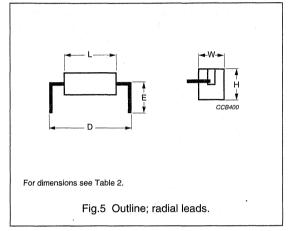



Table 2 Resistor type and relevant physical dimensions; see Figs 4 and 5

| TYPE  | L       | W and H | Ød        | C      | D          | E        |
|-------|---------|---------|-----------|--------|------------|----------|
|       | (mm)    | (mm)    | (mm)      | (mm)   | (mm)       | (mm)     |
| LVR05 | 22 ±1.5 | 8 ±1.0  | 1.0 ±0.05 | 8 ±1.0 | 27.95 ±0.4 | 3.5 ±0.5 |

Philips Components Preliminary specification

# Low ohmic resistor LVR05

### **TESTS AND REQUIREMENTS**

Essentially all tests are carried out in accordance with the schedule of "IEC publication 60115-1", category LCT/UCT/56 (rated temperature range: Lower Category Temperature, Upper Category Temperature; damp heat, long term, 56 days).

The tests are carried out in accordance with IEC publication 60068, "Recommended basic climatic and mechanical robustness testing procedure for electronic components" and under standard atmospheric conditions according to "IEC 60068-1", subclause 5.3.

Unless otherwise specified the following values apply:

Temperature: 15 °C to 35 °C Relative humidity: 45% to 75% Air pressure: 86 kPa to 106 kPa (860 mbar to 1060 mbar).

In Table 3 the tests and requirements are listed with reference to the relevant clauses of "IEC publications 60115-1 and 60068", a short description of the test procedure is also given. In some instances deviations from the IEC recommendations were necessary for our method of specifying.

Table 3 Test procedures and requirements

| IEC<br>60115-1<br>CLAUSE | IEC<br>60068<br>TEST<br>METHOD | TEST                                             | PROCEDURE                                                                                                            | REQUIREMENTS                       |
|--------------------------|--------------------------------|--------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|------------------------------------|
| 4.15                     |                                | robustness of resistor body                      | load 100 ±10 N                                                                                                       | no damage<br>∆R/R max.: 1.0%       |
| 4.16                     | U                              | robustness of terminations:                      |                                                                                                                      | ·                                  |
| 4.16.2                   | Ua                             | tensile all samples                              | load 10 N; 10 s                                                                                                      |                                    |
| 4.16.3                   | Ub                             | bending half number of samples                   | load 5 N; 4 × 90°                                                                                                    |                                    |
| 4.16.4                   | Uc                             | torsion other half of samples                    | 2 × 180° in opposite directions                                                                                      | no damage<br>ΔR/R max.: 0.5%       |
| 4.17                     | Та                             | solderability                                    | 2 s; 230 °C; flux 600                                                                                                | good tinning; no damage            |
| 4.18                     | Tb                             | resistance to soldering heat                     | thermal shock: 3 s; 350 °C;<br>6 mm from body                                                                        | ΔR/R max.: 1%                      |
| 4.19                     | Na                             | rapid change of temperature                      | 30 minutes at -25 °C and 30 minutes at +155 °C; 5 cycles                                                             | no visible damage<br>ΔR/R max.: 1% |
| 4.22                     | Fc                             | vibration                                        | frequency 10 to 55 Hz;<br>displacement 0.75 mm or<br>acceleration 10 g; 3 directions;<br>total 6 hours (3 × 2 hours) | no damage<br>ΔR/R max.: 1%         |
| 4.23                     |                                | climatic sequence:                               |                                                                                                                      |                                    |
| 4.23.2                   | Ва                             | dry heat                                         | 16 hours; 155 °C                                                                                                     |                                    |
| 4.23.3                   | Db                             | damp heat (accelerated)<br>1 <sup>st</sup> cycle | 24 hours; 55 °C; 90 to 100% RH                                                                                       |                                    |
| 4.23.4                   | Aa                             | cold                                             | 2 hours; –25 °C                                                                                                      |                                    |
| 4.23.5                   | М                              | low air pressure                                 | 2 hours; 8.5 kPa; 15 to 35 °C                                                                                        |                                    |
| 4.23.6                   | Db                             | damp heat (accelerated) remaining cycles         | 5 days; 55 °C; 95 to 100% RH;<br>after 24 hours at P <sub>n</sub>                                                    | ΔR/R max.: 3%                      |

LVR05

| IEC<br>60115-1<br>CLAUSE | IEC<br>60068<br>TEST<br>METHOD | TEST                                    | PROCEDURE                                                             | REQUIREMENTS                       |
|--------------------------|--------------------------------|-----------------------------------------|-----------------------------------------------------------------------|------------------------------------|
| 4.24.2                   | Ca                             | damp heat<br>(steady state)             | 21 days; 40 °C; 90 to 95% RH; dissipation 0.01 P <sub>n</sub>         | ΔR/R max.: 3%                      |
| 4.25.1                   |                                | endurance<br>(at 40 °C)                 | 1000 hours loaded with P <sub>n</sub> ;<br>1.5 hours on 0.5 hours off | ΔR/R max.: 5%                      |
| 4.23.2                   | Ва                             | endurance at upper category temperature | 1000 hours at 155 °C, no load                                         | no visible damage<br>ΔR/R max.: 5% |
| 4.8.4                    |                                | temperature coefficient                 | between –25 °C and +155 °C (TC × 10 <sup>-6</sup> /K)                 | ±200 × 10 <sup>-6</sup> /K         |
| 4.6.1.1                  |                                | insulation resistance                   | 500 V (DC) during 1 minute;<br>V-block method                         | $R_{ins}$ min.: 10 <sup>2</sup> MΩ |
| 4.13                     |                                | short time overload                     | room temperature;<br>dissipation 10 × P <sub>n</sub> ; 5 s            | ΔR/R max.: 2%                      |

# SMW02/03/05 SMF02/03/05

# **FEATURES**

- High power dissipation in small volume
- High pulse load handling capabilities
- · 2e pitch mounting
- Designed in stand-up configuration for stand-up mounting.

### **APPLICATIONS**

- · Ballast switching
- · Power supplies
- · Shunts.

### DESCRIPTION

**SMW**: The resistor element is a resistive wire which is wound in a single layer on a ceramic rod. Metal caps are pressed over the ends of the rod. The ends of the resistance wire and the leads are connected to the caps by welding.

**SMF**: The resistor element is a metal film resistor consisting of a metal layer deposited over a high grade ceramic rod. The resistive film is adjusted to final value by means of a helical groove. The leads are connected to the caps by welding.

**SMW/SMF**: Tinned copper-clad iron leads with poor heat conductivity are employed permitting the use of relatively short leads to obtain stable mounting without overheating the solder joint.

The resistor body and lead ends are housed within a rectangular ceramic case which is non-flammable, will not melt even at high overloads and is resistant to most commonly used cleaning solvents, in accordance with "MIL-STD-202E, method 215" and "IEC 60068-2-45".

# QUICK REFERENCE DATA

| DESCRIPTION                                   | VALUE                                     |                   |                                         |                                       |                 |                   |
|-----------------------------------------------|-------------------------------------------|-------------------|-----------------------------------------|---------------------------------------|-----------------|-------------------|
| DESCRIPTION                                   | SMW02                                     | SMF02             | SMW03                                   | SMF03                                 | SMW05           | SMF05             |
| Resistance range; note 1                      | 0.1 to<br>200 Ω                           | 220 Ω to<br>47 kΩ | 0.1 to<br>560 Ω                         | 620 Ω to<br>47 kΩ                     | 0.1 to<br>560 Ω | 620 Ω to<br>47 kΩ |
| Resistance tolerance                          |                                           | ±5%; E24 series   |                                         |                                       |                 |                   |
| Maximum permissible body temperature          | 300 °C                                    |                   |                                         |                                       |                 |                   |
| Rated dissipation at T <sub>amb</sub> = 70 °C | 2 W 3 W 5 W                               |                   |                                         | W                                     |                 |                   |
| Climatic category (IEC 60068)                 |                                           |                   | 40/20                                   | 00/56                                 | koman           | ,                 |
| Basic specification                           |                                           |                   | IEC 60                                  | 0115-1                                |                 |                   |
| Stability after:                              |                                           |                   | *************************************** | · · · · · · · · · · · · · · · · · · · |                 |                   |
| load, 1000 hours                              | $\Delta$ R/R max.: $\pm 5\% + 0.1 \Omega$ |                   |                                         |                                       |                 |                   |
| climatic tests                                | $\Delta$ R/R max.: $\pm 3\% + 0.1 \Omega$ |                   |                                         |                                       |                 |                   |
| short time overload                           | $\Delta$ R/R max.: $\pm 2\% + 0.1 \Omega$ |                   |                                         |                                       |                 |                   |
| Insulation voltage                            |                                           |                   | >20                                     | 00 V                                  |                 |                   |

# Note

1. Higher values are available on request.

SMW02/03/05 SMF02/03/05

# ORDERING INFORMATION

Table 1 Ordering code indicating resistor type and packaging

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ORDERING CODE 2306 34 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| TYPE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | LOOSE IN BOX          |
| ing a state of the | 500 units             |
| SMW02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0 03                  |
| SMF02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5 03                  |
| SMW03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1 03                  |
| SMF03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6 03                  |
| SMW05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2 03                  |
| SMF05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 7 03                  |

# Ordering code (12NC)

- The resistors have a 12-digit ordering code starting with 2306 34
- The subsequent 3 digits indicate the resistor type and packaging; see Table 1.
- The remaining 3 digits indicate the resistance value:
  - The first 2 digits indicate the resistance value.
  - The last digit indicates the resistance decade in accordance with Table 2.

Table 2 Last digit of 12NC

| RESISTANCE<br>DECADE | LAST DIGIT |
|----------------------|------------|
| 0.1 to 0.91 Ω        | 7          |
| 1 to 9.1 Ω           | 8          |
| 10 to 91 Ω           | 9          |
| 100 to 910 Ω         | 1          |
| 1 to 9.1 kΩ          | 2          |
| 10 to 47 kΩ          | 3          |

# ORDERING EXAMPLE

The ordering code of a SMW02 resistor, value 47  $\Omega$ , supplied loose in box of 500 units is: 2306 340 03479.

SMW02/03/05 SMF02/03/05

# **FUNCTIONAL DESCRIPTION**

# **Product characterization**

Standard values of nominal resistance are taken from the E24 series for resistors with a tolerance of  $\pm 5\%$ . The values of the E24 series are in accordance with "IEC publication 60063".

# **Limiting values**

| TYPE  | LIMITING VOLTAGE <sup>(1)</sup> (V) | LIMITING POWER<br>(W) |
|-------|-------------------------------------|-----------------------|
| SMW02 | $V = \sqrt{P_n \times R}$           | 2                     |
| SMF02 | 350                                 |                       |
| SMW03 | $V = \sqrt{P_n \times R}$           | 3                     |
| SMF03 | 350                                 |                       |
| SMW05 | $V = \sqrt{P_n \times R}$           | 5                     |
| SMF05 | 600                                 | . 1                   |

### Note

 The maximum voltage that may be continuously applied to the resistor element, see "IEC publication 60266".

# DERATING

The power that the resistor can dissipate depends on the operating temperature; see Fig.1.

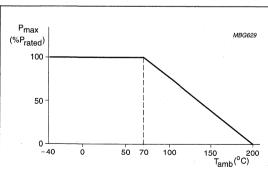



Fig.1 Maximum dissipation ( $P_{max}$ ) in percentage of rated power as a function of the ambient temperature ( $T_{amb}$ ).

The maximum permissible hot-spot temperature is 300  $^{\circ}$ C, and the minimum breakdown voltage of the encapsulation is 2000 V.

PULSE LOADING CAPABILITY

Detailed pulse loading information is available on request.

# Application information

# MOUNTING

The resistors must be mounted in such a way that no stress is exerted on the leads and that thermal expansion is possible over the temperature range. Ensure that the temperature rise of the resistor body by conducted or convected heat, does not affect nearby components or materials. The temperature rise at the soldering point of the leads must not reach the melting point of the solder. The temperature rise at the soldering point as a function of dissipated power is shown in Fig.2.

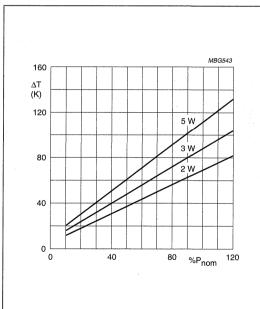



Fig.2 Solder spot temperature rise ( $\Delta T$ ) as a function of dissipated power.

SMW02/03/05 SMF02/03/05

# **MECHANICAL DATA**

# Mass per 100 units

| TYPE  | MASS<br>(g) |
|-------|-------------|
| SMW02 | 370         |
| SMF02 | 3/0         |
| SMW03 | 530         |
| SMF03 | 530         |
| SMW05 | 640         |
| SMF05 | 040         |

# Marking

The resistor is marked with the resistor type designation, the production week, nominal resistance value, the tolerance on the resistance and the rated dissipation at  $T_{amb} = 70~^{\circ}\text{C}$ .

For values up to 910  $\Omega$  the R is used as a decimal point. For values of 1  $k\Omega$  or greater the letter K is used as the decimal point for the  $k\Omega$  indication.

# Outlines

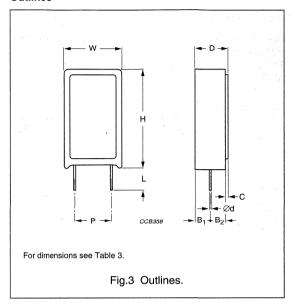



Table 3 Resistor type and relevant physical dimensions; see Fig.3

| TYPE  | W<br>(mm) | D<br>(mm) | C<br>(mm) | H<br>(mm) | B <sub>1</sub> – B <sub>2</sub>  <br>(mm) | L<br>(mm) | P<br>(mm) | Ød<br>(mm) |
|-------|-----------|-----------|-----------|-----------|-------------------------------------------|-----------|-----------|------------|
| SMW02 | 11 ±1     | 7 ±1      | 0/+1.0    | 20.5 ±1.5 | +0.9/-0.3                                 |           |           |            |
| SMF02 | 11 11     | / 11      | 0/+1.0    | 20.5 11.5 | +0.9/-0.3                                 |           |           |            |
| SMW03 | 12 ±1     | 8 ±1      | 0/+1.0    | 25.0 ±1.5 | +1.4/-0.3                                 | 4.5 ±1.5  | 5 ±1      | 0.8 ±0.03  |
| SMF03 | 12 11     | OII       | 0/+1.0    | 25.0 11.5 | +1.4/-0.3                                 | 4.5 ±1.5  | J ±1      | 0.6 ±0.03  |
| SMW05 | 10.11     | 0.11      | 0/.10     | 05 5 14 5 | +2.3/-0.3                                 |           |           |            |
| SMF05 | 13 ±1     | 9 ±1      | 0/+1.0    | 25.5 ±1.5 | +2.3/-0.3                                 |           |           |            |

SMW02/03/05 SMF02/03/05

### **TESTS AND REQUIREMENTS**

Essentially all tests are carried out in accordance with the schedule of "IEC publications 60115-1 and 60115-4", category 40/200/56 (rated temperature range –40 °C to +200 °C; damp heat, long term, 56 days). The testing also covers the requirements specified by EIA and EIAJ.

The tests are carried out in accordance with IEC publication 60068, "Recommended basic climatic and mechanical robustness testing procedure for electronic components" and under standard atmospheric conditions according to "IEC 60068-1", subclause 5.3.

Unless otherwise specified the following values apply:

Temperature: 15 °C to 35 °C Relative humidity: 45% to 75% Air pressure: 86 kPa to 106 kPa (860 mbar to 1060 mbar).

In Table 4 the tests and requirements are listed with reference to the relevant clauses of "IEC publications 60115-1, 60115-4 and 68", a short description of the test procedure is also given. In some instances deviations from the IEC recommendations were necessary for our method of specifying.

All soldering tests are performed with mildly activated flux.

Table 4 Test procedures and requirements

| IEC<br>60115-1<br>CLAUSE | IEC<br>60068<br>TEST<br>METHOD | TEST                                                | PROCEDURE                                                                                                            | REQUIREMENTS                                                   |
|--------------------------|--------------------------------|-----------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|
| Tests in ac              | cordance v                     | vith the schedule of IE                             | EC publication 60115-1                                                                                               |                                                                |
| 4.15                     |                                | robustness of resistor body                         | load 200 ±10 N                                                                                                       | no visible damage $\Delta$ R/R max.: $\pm 0.5\% + 0.05 \Omega$ |
| 4.16                     | U                              | robustness of terminations:                         |                                                                                                                      |                                                                |
|                          | Ua                             | tensile all samples                                 | load 10 N; 10 s                                                                                                      | no visible damage $\Delta$ R/R max.: $\pm 0.5\% + 0.05 \Omega$ |
| 4.17                     | Та                             | solderability                                       | 2 s; 235 °C; flux 600                                                                                                | good tinning; no damage                                        |
| 4.18                     | Tb                             | resistance to soldering heat                        | thermal shock: 3 s; 350 °C;<br>2.5 mm from body                                                                      | $\Delta$ R/R max.: $\pm 0.5\% + 0.05 \Omega$                   |
| 4.19                     | 14 (Na)                        | rapid change of temperature                         | 30 minutes at -40 °C and<br>30 minutes at +200 °C; 5 cycles                                                          | no visible damage $\Delta R/R$ max.: $\pm 1\% + 0.05 \Omega$   |
| 4.22                     | Fc                             | vibration                                           | frequency 10 to 500 Hz; displacement 0.75 mm or acceleration 10 g; 3 directions; total 6 hours ( $3 \times 2$ hours) | no damage<br>$\Delta R/R$ max.: $\pm 0.5\% + 0.05 \Omega$      |
| 4.20                     | Eb                             | bump                                                | 4000 ±10 bumps; 390 m/s <sup>2</sup>                                                                                 | no damage $\Delta$ R/R max.: $\pm 0.5\% + 0.05 \Omega$         |
| 4.23                     |                                | climatic sequence:                                  |                                                                                                                      |                                                                |
| 4.23.2                   | Ва                             | dry heat                                            | 16 hours; 200 °C                                                                                                     |                                                                |
| 4.23.3                   | Db                             | damp heat<br>(accelerated)<br>1 <sup>st</sup> cycle | 24 hours; 55 °C; 95 to 100% RH                                                                                       |                                                                |
| 4.23.4                   | Aa                             | cold                                                | 2 hours; –40 °C                                                                                                      |                                                                |
| 4.23.5                   | М                              | low air pressure                                    | 1 hour; 8.5 kPa; 15 to 35 °C                                                                                         |                                                                |
| 4.23.6                   | Db                             | damp heat<br>(accelerated)<br>remaining cycles      | 5 days; 55 °C; 95 to 100% RH                                                                                         | $\Delta$ R/R max.: $\pm 3\% + 0.05 \Omega$                     |

# SMW02/03/05 SMF02/03/05

| IEC<br>60115-1<br>CLAUSE | IEC<br>60068<br>TEST<br>METHOD | TEST                                    | PROCEDURE                                                                                 | REQUIREMENTS                                                                                       |
|--------------------------|--------------------------------|-----------------------------------------|-------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|
| 4.24.2                   | 3 (Ca)                         | damp heat<br>(steady state)             | 56 days; 40 °C; 90 to 95% RH;<br>dissipation ≤0.01 P <sub>n</sub>                         | no visible damage $\Delta$ R/R max.: ±3% + 0.1 $\Omega$                                            |
| 4.8.4.2                  |                                | temperature<br>coefficient              | at 20/–40/20 °C, 20/200/20 °C:<br>SMW: R < 10 $\Omega$<br>SMW: R $\geq$ 10 $\Omega$       | $TC \le \pm 600 \times 10^{-6}/K$<br>$-80 \times 10^{-6} \le TC$<br>$TC \le +140 \times 10^{-6}/K$ |
| -                        |                                |                                         | SMF                                                                                       | TC ≤ +250 × 10 <sup>-6</sup> /K                                                                    |
| 4.13                     |                                | short time overload                     | room temperature; dissipation $10 \times P_n$ ; 5 s O(voltage not more than 1000 V/25 mm) | $\Delta$ R/R max.: ±2% + 0.1 Ω                                                                     |
| 4.25.1                   |                                | endurance (at 70 °C)                    | 1000 hours loaded with 0.9 P <sub>n</sub> ;<br>1.5 hours on and 0.5 hours off             | no visible damage $\Delta$ R/R max.: $\pm$ 5% + 0.1 $\Omega$                                       |
| 4.23.2                   | Ва                             | endurance at upper category temperature | 1000 hours; 200 °C; no load                                                               | no visible damage $\Delta$ R/R max.: $\pm 5\% + 0.1 \Omega$                                        |

# RMW03/05/07/10/15/20 RMF03/05/07/10

# **FEATURES**

High power dissipation in small volume
Low solder spot temperature
Very stable mounting.

# **APPLICATIONS**

 These resistors have been designed to dissipate high powers in a small volume, to be used in applications where low solder spot temperature and very stable mounting are essential.

**QUICK REFERENCE DATA** 

# DESCRIPTION

RMW: The resistor element is a resistive wire which is wound in a single layer on a fibre glass

core.

RMF: The resistor element is a metal film resistor consisting of a metal layer deposited over a high grade ceramic rod. The resistive film is adjusted to final value by means of a helical groove.

RMW/RMF: The mounting terminations are crimped to the resistive body to assure a good mechanical and electrical contact.

The resistor body and lead ends are housed within a rectangular ceramic case which is non-flammable, will not melt even at high overloads and is resistant to most commonly used cleaning solvents, in accordance with "IEC 60068-2-45".

|                                                    |                    |                   |                    |                   | LIVA                                  | 1                |                        |                  |                   |                   |
|----------------------------------------------------|--------------------|-------------------|--------------------|-------------------|---------------------------------------|------------------|------------------------|------------------|-------------------|-------------------|
| DESCRIPTION                                        |                    | 4.1               |                    |                   | VALUE                                 | JE               |                        |                  |                   |                   |
|                                                    | RMW03              | RMF03             | RMW05              | RMF05             | RMW07                                 | RMF07            | RMW10                  | RMF10            | RMW15             | RMW20             |
| Resistance tolerance, type and range (E24 series): |                    |                   |                    |                   |                                       |                  |                        |                  |                   |                   |
| ±10%                                               | 0.22 to<br>1.5 Ω   |                   | 0.47 to<br>1.5 Ω   | l                 | 0.68 to<br>1.5 Ω                      | 1 k to<br>100 kΩ | 1.0 to<br>1.5 $\Omega$ | 1 k to<br>150 kΩ | 1.0 to            | 1.5 to<br>3.0 Ω   |
| <b>#2%</b>                                         | 1.6 Ω to<br>3.9 kΩ | 100 Ω to<br>39 kΩ | 1.6 Ω to<br>4.7 kΩ | 100 Ω to<br>51 kΩ | 1.6 Ω to<br>7.5 kΩ                    | 1                | 1.6 Ω to<br>10 kΩ      | 1.               | 2.2 Ω to<br>10 kΩ | 3.3 Ω to<br>15 kΩ |
| Maximum permissible body temperature               |                    |                   |                    |                   | 275 °C                                | ပွ               |                        |                  |                   |                   |
| Rated dissipation at T <sub>amb</sub> = 70 °C      | က                  | 3 W               | r.                 | 5 W               | M 2                                   | >                | 10 W                   | *                | 15 W              | 20 W              |
| Climatic category (IEC 60068)                      |                    |                   |                    |                   | 25/155/56                             | 92/2             |                        |                  |                   |                   |
| Basic specification                                |                    |                   |                    |                   | IEC 60115-1                           | 115-1            |                        |                  |                   |                   |
| Stability after:                                   |                    |                   |                    |                   |                                       |                  |                        |                  |                   |                   |
| load, 1000 hours                                   |                    |                   |                    | V                 | ΔR/R max.: ±5% + 0.1 Ω                | 5% + 0.1 Ω       |                        |                  |                   |                   |
| climatic tests                                     |                    |                   |                    | N                 | ΔR/R max.: ±1% + 0.1 Ω                | 1% + 0.1 Ω       |                        |                  |                   |                   |
| short time overload                                |                    |                   |                    | ∇                 | $\Delta$ R/R max.: ±2% + 0.1 $\Omega$ | 2% + 0.1 Ω       |                        |                  |                   |                   |
| Insulation voltage                                 |                    |                   | -                  |                   | >2000 V                               | ۸ ر              |                        |                  |                   |                   |

# RMW03/05/07/10/15/20 RMF03/05/07/10

### ORDERING INFORMATION

Table 1 Ordering code indicating resistor type; style and length of termination

| TYPE  | TEF                  | MINATION STY         | LE 1                 | TERMINATI            | ON STYLE 2           | PACKAGING                       |
|-------|----------------------|----------------------|----------------------|----------------------|----------------------|---------------------------------|
| ,     | lead length<br>10 mm | lead length<br>25 mm | lead length<br>30 mm | lead length<br>10 mm | lead length<br>25 mm | LOOSE IN BOX<br>(units per box) |
| RMW03 | 22 250 11            | 22 250 12            | 2 <del>-</del> .     | 22 250 21            | 22 250 22            | 500                             |
| RMF03 | 22 256 11            | 22 256 12            | ÷                    | 22 256 21            | 22 256 22            | 500                             |
| RMW05 | 22 251 11            | 22 251 12            | <del>-</del>         | 22 251 21            | 22 251 22            | 500                             |
| RMF05 | 22 257 11            | 22 257 12            | _                    | 22 257 21            | 22 257 22            | 500                             |
| RMW07 | 22 252 11            | 22 252 12            | - · · · · ·          | 22 252 21            | 22 252 22            | 500                             |
| RMF07 | 22 258 11            | 22 258 12            | <u> </u>             | 22 258 21            | 22 258 22            | 500                             |
| RMW10 | 22 253 11            | 22 253 12            |                      | 22 253 21            | 22 253 22            | 400                             |
| RMF10 | 22 259 11            | 22 259 12            | ; <del>-</del>       | 22 259 21            | 22 259 22            | 400                             |
| RMW15 |                      | _                    | 06 254 11            |                      | <del>-</del>         | 300                             |
| RMW20 | <del>-</del> 1000    |                      | 06 254 11            | · <del>-</del>       | _                    | 50                              |

# Ordering code (12NC)

- The resistors have a 12-digit ordering code starting with 2322 25 or 2306 25
- The subsequent 3 digits indicate the resistor type, termination style and length; see Table 1.
- The remaining 3 digits indicate the resistance value:
  - The first 2 digits indicate the resistance value.
  - The last digit indicates the resistance decade in accordance with Table 2.

Table 2 Last digit of 12NC

| RESISTANCE<br>DECADE | LAST DIGIT |
|----------------------|------------|
| 0.22 to 0.91 Ω       | 7          |
| 1 to 9.1 Ω           | 8          |
| 10 to 91 Ω           | 9          |
| 100 to 910 Ω         | 1          |
| 1 to 9.1 kΩ          | 2          |
| 10 to 91 kΩ          | 3          |
| 100 to 150 kΩ        | 4          |

### **ORDERING EXAMPLE**

The ordering code of an RMW03 resistor, value 47  $\Omega$ , with standard terminations, style 1 and length 10 mm, supplied loose in box of 500 units is: 2322 250 11479.

# RMW03/05/07/10/15/20 RMF03/05/07/10

### **FUNCTIONAL DESCRIPTION**

### Product characterization

Standard values of nominal resistance are taken from the E24 series for resistors with a tolerance of  $\pm 5\%$  or  $\pm 10\%$ . The values of the E24 series are in accordance with "IEC publication 60063".

# Limiting values

| TYPE  | LIMITING VOLTAGE <sup>(1)</sup> (V) | LIMITING POWER<br>(W) |  |
|-------|-------------------------------------|-----------------------|--|
| RMW03 | $V = \sqrt{P_n \times R}$           | 3                     |  |
| RMF03 | 750                                 |                       |  |
| RMW05 | $V = \sqrt{P_n \times R}$           | 5                     |  |
| RMF05 | 1000                                |                       |  |
| RMW07 | $V = \sqrt{P_n \times R}$           | 7                     |  |
| RMF07 | 1200                                |                       |  |
| RMW10 | $V = \sqrt{P_n \times R}$           | 10                    |  |
| RMF10 | 1500                                |                       |  |
| RMW15 | $V = \sqrt{P_n \times R}$           | 15                    |  |
| RMW20 | $V = \sqrt{P_n \times R}$           | 20                    |  |

### Note

 The maximum voltage that may be continuously applied to the resistor element, see "IEC publication 60266".

# Application information

# MOUNTING

The resistors must be mounted in such a way that no stress is exerted on the leads and that thermal expansion is possible over the temperature range. Ensure that the temperature rise of the resistor body by conducted or convected heat, does not affect nearby components or materials. The temperature rise at the soldering point of the leads must not reach the melting point of the solder. The temperature rise at the soldering point and the hot-spot as a function of dissipated power for the various types, are shown in Figs 3, 4, 5 and 6.

The maximum permissible hot-spot temperature is 275  $^{\circ}$ C, and the minimum breakdown voltage of the encapsulation is 2000 V.

### PULSE LOADING CAPABILITY

Detailed pulse loading information is available on request.

### DERATING

The power that the resistor can dissipate depends on the operating temperature; see Fig.1.

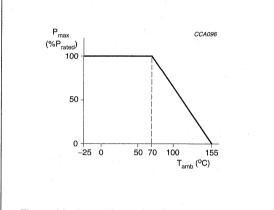
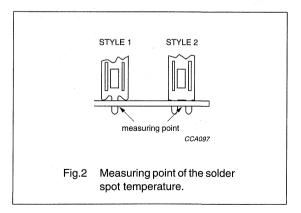
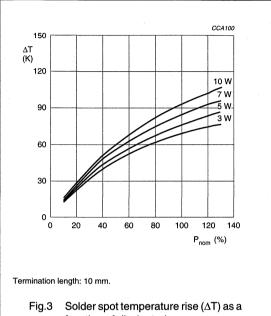
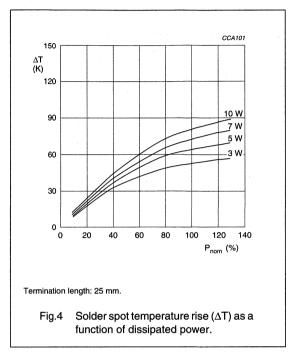
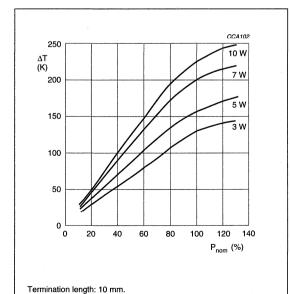
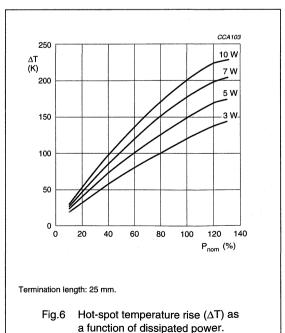





Fig.1 Maximum dissipation ( $P_{max}$ ) in percentage of rated power as a function of the ambient temperature ( $T_{amb}$ ).





# RMW03/05/07/10/15/20 RMF03/05/07/10

# TEMPERATURE RISE OF SOLDER SPOT AND HOT-SPOT AS A FUNCTION OF LOAD AND LEAD LENGTH FOR STYLES 1 AND 2




function of dissipated power.





Hot-spot temperature rise ( $\Delta T$ ) as a function of dissipated power.



# RMW03/05/07/10/15/20 RMF03/05/07/10

### **MECHANICAL DATA**

# Marking

The resistor is marked with the resistor type designation, the production week, nominal resistance value, the tolerance on the resistance and the rated dissipation at  $T_{amb} = 70 \, ^{\circ}\text{C}$ .

For values up to 910  $\Omega$  the R is used as a decimal point. For values of 1 k $\Omega$  or greater the letter K is used as the decimal point for the k $\Omega$  indication.

# Mass per 100 units

|       |               | MASS (g       | )             |
|-------|---------------|---------------|---------------|
| TYPE  | 10 mm<br>LEAD | 25 mm<br>LEAD | 30 mm<br>LEAD |
| RMW03 | 700           | 750           | -             |
| RMF03 | 800           | 850           | _             |
| RMW05 | 700           | 750           | -             |
| RMF05 | 800           | 850           | _             |
| RMW07 | 800           | 900           | -             |

|       |               | MASS (g       | )             |
|-------|---------------|---------------|---------------|
| TYPE  | 10 mm<br>LEAD | 25 mm<br>LEAD | 30 mm<br>LEAD |
| RMF07 | 900           | 1000          |               |
| RMW10 | 1100          | 1150          |               |
| RMF10 | 1200          | 1250          | _             |
| RMW15 |               | -             | 1845          |
| RMW20 | -             | -             | 2312          |

# **Outlines**

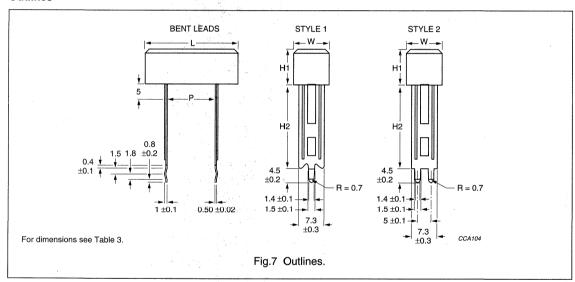



Table 3 Resistor type and relevant physical dimensions; see Fig.7

| TYPE  | W<br>(mm) | L<br>(mm) | H1<br>(mm) | H2<br>(mm)    | P<br>(mm) |
|-------|-----------|-----------|------------|---------------|-----------|
| RMW03 | 0014      |           | 0.0.14     |               | 40.5.14   |
| RMF03 | 9.0 ±1    | 24 ±1     | 9.0 ±1     |               | 12.5 ±1   |
| RMW05 | 0514      | 07.14     | 0.5.14     |               | 450.14    |
| RMF05 | 9.5 ±1    | 27 ±1     | 9.5 ±1     | 10 ±1.5       | 15.0 ±1   |
| RMW07 | 0.5.14    |           | 0 =        | or<br>25 ±1.5 |           |
| RMF07 | 9.5 ±1    | 35 ±1     | 9.5 ±1     | 25 ±1.5       | 22.5 ±1   |
| RMW10 | 05.4      | 4.1       | 0.5.14     | 7             | 05.0.14   |
| RMF10 | 9:5 ±1    | 48 ±1     | 9.5 ±1     |               | 35.0 ±1   |
| RMW15 | 105.46    | 48 ±2     | 10.5.11    | 5 ±1 30 ±1.5  | 32.5 ±1.5 |
| RMW20 | 12.5 ±1.2 | 63.5 ±1   | 5±1 12.5±1 |               | 48 ±1.5   |

# RMW03/05/07/10/15/20 RMF03/05/07/10

### **TESTS AND REQUIREMENTS**

Essentially all tests are carried out in accordance with the schedule of "*IEC publications 60115-1 and 60115-4*", category 25/155/56 (rated temperature range –25 °C to +155 °C; damp heat, long term, 56 days). The testing also covers the requirements specified by EIA and EIAJ.

The tests are carried out in accordance with IEC publication 60068, "Recommended basic climatic and mechanical robustness testing procedure for electronic components" and under standard atmospheric conditions according to "IEC 60068-1", subclause 5.3.

Unless otherwise specified the following values apply:

Temperature: 15 °C to 35 °C Relative humidity: 45% to 75% Air pressure: 86 kPa to 106 kPa (860 mbar to 1060 mbar).

In Table 4 the tests and requirements are listed with reference to the relevant clauses of

"IEC publications 60115-1, 60115-4 and 60068"; a short description of the test procedure is also given. In some instances deviations from the IEC recommendations were necessary for our method of specifying.

All soldering tests are performed with mildly activated flux.

Table 4 Test procedures and requirements

| IEC<br>60115-1<br>CLAUSE | IEC<br>60068<br>TEST<br>METHOD | TEST                                                | PROCEDURE                                                                                                   | REQUIREMENTS                                                            |
|--------------------------|--------------------------------|-----------------------------------------------------|-------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|
| Tests in ac              | cordance v                     | vith the schedule of IE                             | EC publication 60115-1                                                                                      | ,                                                                       |
| 4.15                     | -                              | robustness of resistor body                         | load 200 ±10 N                                                                                              | no visible damage $\Delta R/R$ max.: $\pm 1\% + 0.05 \Omega$            |
| 4.16                     | U                              | robustness of terminations:                         |                                                                                                             |                                                                         |
|                          | Ua                             | tensile all samples                                 | load 45 N; 10 s                                                                                             | no visible damage                                                       |
| 4.17                     | Та                             | solderability                                       | 2 s; 235 °C; flux 600                                                                                       | good tinning; no damage $\Delta$ R/R max.: $\pm 0.5\% + 0.05~\Omega$    |
| 4.18                     | Tb                             | resistance to soldering heat                        | thermal shock: 3 s; 350 °C                                                                                  | $\Delta$ R/R max.: ±1% + 0.05 $\Omega$                                  |
| 4.19                     | 14 (Na)                        | rapid change of temperature                         | 30 minutes at -25 °C and 30 minutes at +155 °C; 5 cycles                                                    | no visible damage $\Delta$ R/R max.: $\pm$ 1% + 0.05 $\Omega$           |
| 4.22                     | Fc                             | vibration                                           | frequency 10 to 55 Hz; displacement 0.75 mm or acceleration 10 g; 3 directions; total 6 hours (3 × 2 hours) | no visible damage<br>$\Delta R/R$ max.: $\pm 1\% + 0.05 \Omega$         |
| 4.23                     |                                | climatic sequence:                                  | ·                                                                                                           |                                                                         |
| 4.23.2                   | Ва                             | dry heat                                            | 16 hours; 155 °C                                                                                            |                                                                         |
| 4.23.3                   | Db                             | damp heat<br>(accelerated)<br>1 <sup>st</sup> cycle | 24 hours; 55 °C; 95 to 100% RH                                                                              |                                                                         |
| 4.23.4                   | Aa                             | cold                                                | 2 hours; –25 °C                                                                                             |                                                                         |
| 4.23.5                   | М                              | low air pressure                                    | 1 hour; 8.5 kPa; 15 to 35 °C                                                                                |                                                                         |
| 4.23.6                   | Db                             | damp heat<br>(accelerated)<br>remaining cycles      | 5 days; 55 °C; 95 to 100% RH                                                                                | after 24 hours at P <sub>n</sub> $\Delta$ R/R max.: ±1% + 0.05 $\Omega$ |

# RMW03/05/07/10/15/20 RMF03/05/07/10

| IEC<br>60115-1<br>CLAUSE | IEC<br>60068<br>TEST<br>METHOD | TEST                                    | PROCEDURE                                                                                                                                                                   | REQUIREMENTS                                                            |
|--------------------------|--------------------------------|-----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|
| 4.24.2                   | 3 (Ca)                         | damp heat<br>(steady state)             | 56 days; 40 °C; 90 to 95% RH;<br>dissipation ≤0.01 P <sub>n</sub>                                                                                                           | no visible damage $\Delta$ R/R max.: ±3% + 0.1 $\Omega$                 |
| 4.8.4.2                  |                                | temperature<br>coefficient              | at 20/–25/20 °C, 20/155/20 °C:<br>R $\leq$ 1 $\Omega$<br>R $>$ 1 $\Omega$                                                                                                   | $TC \le \pm 600 \times 10^{-6} / K$<br>$TC \le +200 \times 10^{-6} / K$ |
| 4.13                     |                                | short time overload                     | room temperature; dissipation $10 \times P_n$ ; 5 s RMF03: $V \le 1500 \text{ V}$ RMF05: $V \le 2000 \text{ V}$ RMF07: $V \le 2500 \text{ V}$ RMF10: $V \le 3000 \text{ V}$ | ΔR/R max.: ±2% + 0.1 Ω                                                  |
| 4.25.1                   |                                | endurance (at 70 °C)                    | 1000 hours loaded with P <sub>n</sub> ;<br>1.5 hours on and 0.5 hours off                                                                                                   | no visible damage R/R max.: $\pm 5\% + 0.1 \Omega$                      |
| 4.23.2                   | Ва                             | endurance at upper category temperature | 1000 hours; 155 °C; no load                                                                                                                                                 | no visible damage $\Delta$ R/R max.: $\pm$ 5% + 0.1 $\Omega$            |
| 4.6.1.1                  |                                | insulation resistance                   | 500 V (DC); 1 minute                                                                                                                                                        | ≥100 MΩ                                                                 |
| 4.7                      |                                | voltage proof on insulation             | 1000 V (RMS); 1 minute                                                                                                                                                      | $\Delta$ R/R max.: $\pm 0.5\% + 0.05 \Omega$                            |

# **MAINTENANCE TYPES**

# Metal film resistors

MR25/30

# **APPLICATIONS**

- For use in professional equipment:
  - computers
  - telecommunications
  - measuring devices.

# **DESCRIPTION**

A homogeneous film of metal alloy is deposited on a high grade ceramic body. After a helical groove has been cut in the resistive layer, tinned connecting leads of electrolytic copper are welded to the end-caps.

The resistors are coated with layers of green lacquer which provide electrical, mechanical and climatic protection. The encapsulation is resistant to all cleaning solvents, in accordance with "MIL-STD-202E method 215" and "IEC 60068-2-45".

# QUICK REFERENCE DATA

| DESCRIPTION                                              | VALUE                                         |                       |  |
|----------------------------------------------------------|-----------------------------------------------|-----------------------|--|
| DESCRIPTION                                              | MR25                                          | MR30                  |  |
| Resistance range                                         | 1 Ω to                                        | 1 ΜΩ                  |  |
| Resistance tolerance                                     | ±0.5%, E1                                     | 92 series             |  |
| Temperature coefficient:                                 |                                               |                       |  |
| 1 Ω ≤ R < 4.99 Ω                                         | 100 × 1                                       | 0 <sup>-6</sup> /K    |  |
| $4.99 \Omega \le R \le 1 M\Omega$                        | 50 × 1                                        | 0 <sup>-6</sup> /K    |  |
| Absolute maximum dissipation at T <sub>amb</sub> = 70 °C | 0.4 W                                         | 0.5 W                 |  |
| Maximum permissible voltage                              | 250 V                                         | 350 V                 |  |
| Basic specifications                                     | IEC 60                                        | 115-1                 |  |
| Approval                                                 | CECC 4                                        | 40101                 |  |
| Climatic category (IEC 60068)                            | 55/15                                         | 5/56                  |  |
| Stability after:                                         |                                               |                       |  |
| load                                                     | see F                                         | ig.1                  |  |
| climatic tests                                           | $\Delta$ R/R max.: ±0.                        | $5\%$ + $0.05~\Omega$ |  |
| soldering                                                | $\Delta$ R/R max.: $\pm 0.1\% + 0.01 \Omega$  |                       |  |
| short time overload                                      | $\Delta$ R/R max.: $\pm 0.25\% + 0.05 \Omega$ |                       |  |

# Metal film resistors

MR25/30

# **ORDERING INFORMATION**

Table 1 Ordering code indicating resistor type and packaging

|      | ORDERING CODE 2322 15  BANDOLIER IN AMMOPACK  1000 units |  |
|------|----------------------------------------------------------|--|
| ТҮРЕ |                                                          |  |
|      |                                                          |  |
| MR25 | 17                                                       |  |
| MR30 | 27                                                       |  |

# Ordering code (12NC)

- The resistors have a 12-digit ordering code starting with 2322 15
- The subsequent 2 digits indicate the resistor type and packaging; see Table 1.
- The remaining 4 digits indicate the resistance value:
  - The first 3 digits indicate the resistance value.
  - The last digit indicates the resistance decade in accordance with Table 2.

# Table 2 Last digit of 12NC

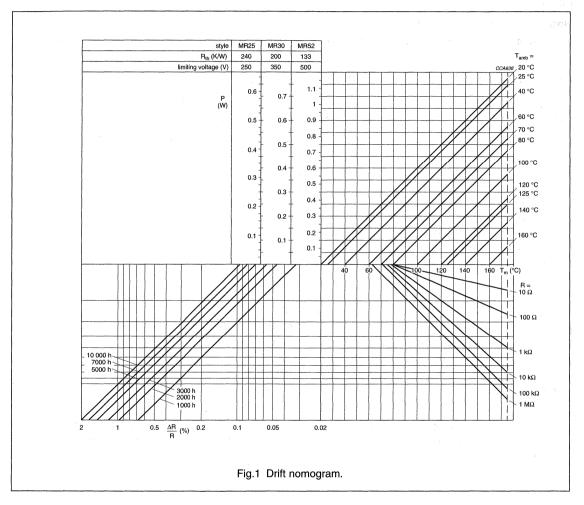
| RESISTANCE<br>DECADE        | LAST DIGIT |
|-----------------------------|------------|
| 1 to 9.76 Ω                 | 8          |
| 10 to 97.6 Ω <sup>(1)</sup> | 9          |
| 100 to 976 Ω                | <b>1</b>   |
| 1 to 9.76 kΩ                | 2          |
| 10 to 97.6 kΩ               | 3          |
| 100 to 976 kΩ               | 4          |
| 1 ΜΩ                        | 5          |

# Note

 The composition of the catalogue number is not applicable for R = 49.9 Ω; the relevant catalogue numbers will be indicated on request.

# ORDERING EXAMPLE

The ordering code of a MR30 resistor, value 3650  $\Omega$  ±0.5%, taped on a bandolier of 1000 units in ammopack is: 2322 152 73652.


Philips Components Maintenance types

Metal film resistors MR25/30

### **FUNCTIONAL DESCRIPTION**

### **Product characterization**

Standard values of nominal resistance are taken from the E24/E96 series for  $\pm 1\%$  and E192 for  $\pm 0.5\%$ . The values of the series are in accordance with "IEC publication 60063".



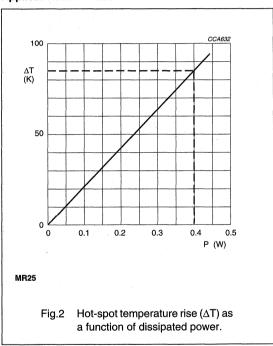
### NOTES ON THE NOMOGRAM

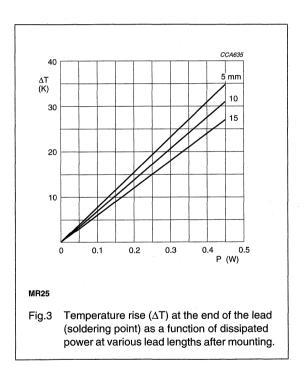
- 1. It should not be extended beyond the maximum permissible hot-spot temperature of 175 °C.
- 2. The change in resistance for P = 0 at a particular ambient temperature is indicative for shelf-life stability of a resistor at that temperature.
- 3. The stability lines do not give exact values of ΔR/R but represent a probability of 95% that the actual values will be smaller than those obtained from the nomogram.
- 4. The limiting voltage has not been taken into consideration.

# Metal film resistors

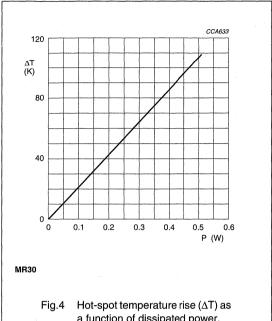
MR25/30

# **Limiting values**

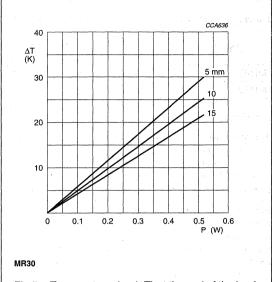

| TYPE | LIMITING VOLTAGE <sup>(1)</sup> (V) | LIMITING POWER<br>(W) |  |
|------|-------------------------------------|-----------------------|--|
| MR25 | 250                                 | 0.4                   |  |
| MR30 | 350                                 | 0.5                   |  |


# Note

1. The maximum voltage that may be applied continuously to the resistor element, see "IEC publication 60115-1".


The maximum permissible hot-spot temperature is 175 °C.

# **Application information**






Metal film resistors MR25/30



a function of dissipated power.



Temperature rise ( $\Delta T$ ) at the end of the lead Fig.5 (soldering point) as a function of dissipated power at various lead lengths after mounting.

# Metal film resistors

MR25/30

# **MECHANICAL DATA**

# Mass per 100 units

| TYPE | MASS<br>(g) |
|------|-------------|
| MR25 | 25          |
| MR30 | 32          |

# Marking

The nominal resistance and tolerance are marked on the resistor using five or six coloured bands in accordance with IEC publication 60062 "Colour codes for fixed resistors".

Six bands are used for resistors in MR25 and MR30 series: 3 for resistance value, 1 for multiplier, 1 for tolerance and 1 for the temperature coefficient.

# **Outlines**

The length of the body  $(L_1)$  is measured by inserting the leads into holes of two identical gauge plates and moving these plates parallel to each other until the resistor body is clamped without deformation ("IEC publication 60294").

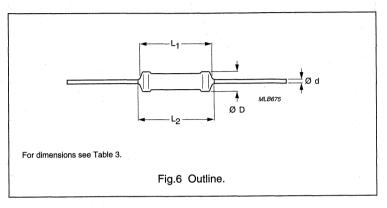



Table 3 Resistor type and relevant physical dimensions; see Fig.6

| TYPE   | ØD<br>MAX.<br>(mm) | L <sub>1</sub><br>MAX.<br>(mm) | L <sub>2</sub><br>MAX.<br>(mm) | Ød<br>(mm) |
|--------|--------------------|--------------------------------|--------------------------------|------------|
| MR25   | 2.5                | 6.5                            | 7.5                            | 0.58 ±0.05 |
| MR30 · | 3.0                | 10.0                           | 11.0                           | 0.58 ±0.05 |

# Metal film resistors MR25/30

# **TESTS AND REQUIREMENTS**

Essentially all tests are carried out in accordance with the schedule of "IEC publication 60115-1", category 55/155/56 (rated temperature range –55 °C to +155 °C; damp heat, long term, 56 days). The testing also covers the requirements specified by EIA and EIAJ.

The tests are carried out in accordance with IEC publication 60068, "Recommended basic climatic and mechanical robustness testing procedure for electronic components" and under standard atmospheric conditions according to "IEC 60068-1", subclause 5.3.

Unless otherwise specified the following values apply:

Temperature: 15 °C to 35 °C Relative humidity: 45% to 75% Air pressure: 86 kPa to 106 kPa (860 mbar to 1060 mbar).

In Table 4 the tests and requirements are listed with reference to the relevant clauses of "IEC publications 60115-1 and 60068"; a short description of the test procedure is also given. In some instances deviations from the IEC recommendations were necessary for our method of specifying.

Table 4 Test procedures and requirements

| IEC<br>60115-1<br>CLAUSE | IEC<br>60068<br>TEST<br>METHOD | TEST                                                | PROCEDURE                                                                                                            | REQUIREMENTS                                                        |
|--------------------------|--------------------------------|-----------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|
| 4.16                     | U                              | robustness of terminations:                         |                                                                                                                      |                                                                     |
| 4.16.2                   | Ua                             | tensile all samples                                 | load 10 N; 10 s                                                                                                      | number of failures $<10 \times 10^{-6}$                             |
| 4.16.3                   | Ub                             | bending half<br>number of samples                   | load 5 N; 4 × 90°                                                                                                    | number of failures $<10 \times 10^{-6}$                             |
| 4.16.4                   | Uc                             | torsion other half of samples                       | 3 × 360° in opposite directions                                                                                      | no damage $\Delta R/R$ max.: $\pm 0.1\% + 0.01~\Omega$              |
| 4.17                     | Ta                             | solderability                                       | 2 s; 230 °C; flux 600                                                                                                | good tinning; no damage                                             |
| 4.18                     | Tb                             | resistance to soldering heat                        | thermal shock: 3 s; 350 °C;<br>6 mm from body                                                                        | $\Delta$ R/R max.: $\pm 0.1\% + 0.01 \Omega$                        |
| 4.19                     | Na                             | rapid change of temperature                         | 30 minutes at -55 °C and 30 minutes at +155 °C; 5 cycles                                                             | $\Delta$ R/R max.: ±0.1% + 0.01 Ω                                   |
| 4.20                     | Eb                             | bump                                                | $3 \times 1500$ bumps in 3 directions; 40 g                                                                          | no damage<br>ΔR/R max.: ±0.1% + 0.01 Ω                              |
| 4.22                     | Fc                             | vibration                                           | frequency 10 to 500 Hz;<br>displacement 1.5 mm or<br>acceleration 10 g; 3 directions;<br>total 6 hours (3 × 2 hours) | no damage $\Delta$ R/R max.: $\pm 0.1\%$ + 0.01 $\Omega$            |
| 4.23                     |                                | climatic sequence:                                  |                                                                                                                      |                                                                     |
| 4.23.2                   | В                              | dry heat                                            | 16 hours; 155 °C                                                                                                     |                                                                     |
| 4.23.3                   | D                              | damp heat<br>(accelerated)<br>1 <sup>st</sup> cycle | 24 hours; 55 °C; 95 to 100% RH                                                                                       |                                                                     |
| 4.23.4                   | Aa                             | cold                                                | 2 hours; –55 °C                                                                                                      |                                                                     |
| 4.23.5                   | М                              | low air pressure                                    | 1 hour; 8.5 kPa; 15 to 35 °C                                                                                         |                                                                     |
| 4.23.6                   | D                              | damp heat<br>(accelerated)<br>remaining cycles      | 5 days; 55 °C; 95 to 100% RH                                                                                         | $R_{ins}$ min.: 1000 M $\Omega$<br>ΔR/R max.: ±0.5% + 0.05 $\Omega$ |

# Metal film resistors

MR25/30

| IEC<br>60115-1<br>CLAUSE | IEC<br>60068<br>TEST<br>METHOD | TEST                              | PROCEDURE                                                                                                                                   | REQUIREMENTS                                    |
|--------------------------|--------------------------------|-----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|
| 4.24.2                   | Ca                             | damp heat<br>(long term exposure) | 56 days; 40 °C; 90 to 95% RH; dissipation 0.01 P <sub>n</sub>                                                                               | $R_{ins}$ min.: 1000 M $\Omega$                 |
|                          |                                |                                   | MR25: ≤2.5 mW<br>MR30: ≤3 mW                                                                                                                | $\Delta$ R/R max.: $\pm 0.5\% + 0.05 \Omega$    |
| 4.25.1                   |                                | endurance                         | 1000 hours at 70 °C; Pn or Vmax                                                                                                             | $\Delta$ R/R max.: ±0.5% + 0.05 Ω               |
|                          |                                |                                   | MR25: 0.25 W or V <sub>max</sub><br>MR30: 0.3 W or V <sub>max</sub>                                                                         |                                                 |
| 4.8.4.2                  |                                | temperature                       | between -55 °C and +155 °C                                                                                                                  | R < $4.99 \Omega$ : $\pm 100 \times 10^{-6}$ /K |
|                          |                                | coefficient                       | $\left  (TC \times 10^{-6}/K) \right $                                                                                                      | R $\geq$ 4.99 Ω: $\pm$ 50 × 10 <sup>-6</sup> /K |
| 4.7                      |                                | voltage proof on insulation       | 2 × limiting voltage (AC) with 750 V <sub>max</sub> (RMS)                                                                                   | no breakdown                                    |
| 4.12                     |                                | noise                             | "IEC publication 60195"                                                                                                                     | R ≤ 100 kΩ: max. 0.25 μV/V                      |
| 1                        |                                | 4 - A-4 - 4                       |                                                                                                                                             | R > 100 kΩ: max. 0.5 $\mu$ V/V                  |
| 4.6.1.1                  |                                | insulation resistance             | 100 V (DC) during 1 minute;<br>V-block method                                                                                               | $R_{ins}$ min.: $10^4$ $M\Omega$                |
| 4.13                     |                                | short time overload               | $T_{amb} = 25 ^{\circ}\text{C};  P = 6.25 \times P_n; \\ 5  \text{s on, } 45  \text{s off } (V \le 2 \times V_{max}); \\ 10  \text{cycles}$ | $\Delta$ R/R max.: $\pm 0.25\% + 0.05 \Omega$   |

# MR24/34, E/C/D

# **APPLICATIONS**

- For use in professional equipment:
  - computers
  - telecommunications
  - measuring.

# **DESCRIPTION**

A homogeneous film of metal alloy is deposited on a high grade ceramic body. After a helical groove has been cut in the resistive layer, tinned connecting leads of electrolytic copper are welded to the end-caps.

The resistors are coated with layers of green lacquer which provide electrical, mechanical and climatic protection. The encapsulation is resistant to all cleaning solvents, in accordance with "MIL-STD-202E, method 215" and "IEC 60068-2-45".

# QUICK REFERENCE DATA

| DESCRIPTION                                    | VALUE                                           |
|------------------------------------------------|-------------------------------------------------|
| Resistance range:                              |                                                 |
| MR24/34, E/C                                   | 49.9 Ω to 1 MΩ                                  |
| MR24/34, D                                     | 10 Ω to 1 MΩ                                    |
| Resistance tolerance:                          |                                                 |
| MR24/34, E/C                                   | ±0.1%; 0.25%; 0.5%, E192 series; 1%, E96 series |
| MR24/34, D                                     | 1%, E96 series                                  |
| Temperature coefficient:                       |                                                 |
| MR24/34, E                                     | ±25 × 10 <sup>-6</sup> /K                       |
| MR24/34, C                                     | ±50 × 10 <sup>-6</sup> /K                       |
| MR24/34, D                                     | ±100 × 10 <sup>-6</sup> /K                      |
| Rated dissipation at T <sub>amb</sub> = 70 °C: |                                                 |
| MR24D                                          | 0.125 W                                         |
| MR34D                                          | 0.25 W                                          |
| at T <sub>amb</sub> = 125 °C:                  |                                                 |
| MR24E/C                                        | 0.1 W                                           |
| MR34E/C                                        | 0.125 W                                         |
| Basic specifications                           | MIL-R-10509F                                    |
| Stability after:                               |                                                 |
| load                                           | $\Delta$ R/R max.: ±0.5% + 0.05 Ω               |
| climatic tests                                 | $\Delta$ R/R max.: ±0.5% + 0.05 Ω               |
| soldering                                      | $\Delta$ R/R max.: ±0.1% + 0.05 Ω               |
| short time overload                            | $\Delta$ R/R max.: ±0.25% + 0.05 Ω              |

# MR24/34, E/C/D

# ORDERING INFORMATION

Table 1 Ordering code indicating resistor type, MIL style and packaging

|                         | ************************************** | ORDERING CODE 2322 16 |  |
|-------------------------|----------------------------------------|-----------------------|--|
| TYPE                    | MIL STYLE                              | BULK IN BOX           |  |
| a second control second |                                        | 100 units             |  |
| MR24E                   | RN55E                                  | 0                     |  |
| MR24C                   | RN55C                                  | 1                     |  |
| MR24D                   | RN55D                                  | 2                     |  |
| MR34E                   | RN60E                                  | 3                     |  |
| MR34C                   | RN60C                                  | 4                     |  |
| MR34D                   | RN60D                                  | 5                     |  |

# Ordering code (12NC)(1)

- The resistors have a 12-digit ordering code starting with 2322 16
- The subsequent first digit indicates the resistor type and packaging; see Table 1.
- The remaining 5 digits indicate the tolerance and resistance value:
  - The first digit indicates the tolerance in accordance with Table 2.
  - The next 3 digits indicate the resistance value.
  - The last digit indicates the resistance decade in accordance with Table 3.

(1) For the resistance values mentioned in Table 4, the last 5 digits of the ordering code are stated in full.

Table 2 8th digit of 12NC

| TOLERANCE (%) | CODE  |
|---------------|-------|
| 1             | 1 1 1 |
| 0.5           | 2     |
| 0.25          | 3     |
| 0.1           | 4     |

Table 3 Last digit of 12NC

| RESISTANCE<br>DECADE | LAST DIGIT |
|----------------------|------------|
| 10 to 98.8 Ω         | 9          |
| 100 to 988 Ω         | 1          |
| 1 to 9.88 kΩ         | 2          |
| 10 to 98.8 kΩ        | 3          |
| 100 to 988 kΩ        | 4          |
| 1 ΜΩ                 | 5          |

### ORDERING EXAMPLE

The ordering code of a MR24E resistor, value 505  $\Omega$  ±0.5%, loose in box of 100 units is: 2322 160 25051.

 Table 4
 Last five digits of 12NC for specific resistance values

| RESISTANCE VALUE $(\Omega)$ | 0.1%  | 0.25% | 0.5%     | 1%    |
|-----------------------------|-------|-------|----------|-------|
| 29.9                        | 92102 | 92122 |          | _     |
| 39.9                        | 92103 | 92123 | _        | _     |
| 49.9                        | 92104 | 92124 | 92134    | 92144 |
| 59.9                        | 92105 | 92125 | <u>-</u> | _     |
| 69.9                        | 92106 | 92126 | _        | _     |
| 79.9                        | 92107 | 92127 | _        |       |
| 89.9                        | 92108 | 92128 |          |       |
| 99.9                        | 92109 | 92129 | _        | _     |

MR24/34, E/C/D

# **FUNCTIONAL DESCRIPTION**

# **Product characterization**

The standard values of nominal resistance are taken from the E96 series for resistors with a tolerance of  $\pm 1\%$ , from the E192 series for resistors with a tolerance of  $\pm 0.5\%$ ,  $\pm 0.25\%$  or  $\pm 0.1\%$  ("MIL-R-10509F, paragraph 1.2.1.3").

Resistors with a tolerance of  $\pm 0.1\%$  and  $\pm 0.25\%$  may also be requested with resistance values deviating from the E192 series, provided the value can be indicated with no more than three significant digits.

# Limiting values

| TYPE    | LIMITING VOLTAGE <sup>(1)</sup> (V) | LIMITING POWER (W)       |                           |
|---------|-------------------------------------|--------------------------|---------------------------|
|         |                                     | T <sub>amb</sub> = 70 °C | T <sub>amb</sub> = 125 °C |
| MR24D   | 200                                 | 0.125                    | <del>-</del>              |
| MR34D   | 300                                 | 0.25                     | -                         |
| MR24E/C | 200                                 | -                        | 0.1                       |
| MR34E/C | 250                                 |                          | 0.125                     |

# Note

1. The maximum voltage that may be applied continuously to the resistor element, see "IEC publication 60115-1".

MR24/34, E/C/D

# **MECHANICAL DATA**

# Mass per 100 units

| TYPE      | MASS<br>(g) |
|-----------|-------------|
| MR24E/C/D | 25          |
| MR34E/C/D | 32          |

# Mounting

The resistors must be mounted in such a way that no stress is exerted on the leads, so as to allow thermal expansion over the wide temperature range.

# Marking

The resistors are marked in accordance with MIL specification "MIL-R-10509F". This means that the following information is printed on the resistor:

- MIL style
- · Value and tolerance in MIL code
- Manufacturers' identification symbol.

In the MIL code for value and tolerance the value is indicated by four digits and a letter: first the three significant digits according to the E192 or E96 series, a fourth figure indicating the number of zeros to follow and then a letter indicating the tolerance as follows:

- B = ±0.1%
- C = ±0.25%
- D = ±0.5%
- $F = \pm 1\%$ .

# EXAMPLE

22.1 k $\Omega$  ±1% is written as 2212F.

This code should not be used for ordering. Please use the ordering code as shown in Table 1.

# **Outlines**

The length of the body  $(L_1)$  is measured by inserting the leads into holes of two identical gauge plates and moving these plates parallel to each other until the resistor body is clamped without deformation ("IEC publication 60294").

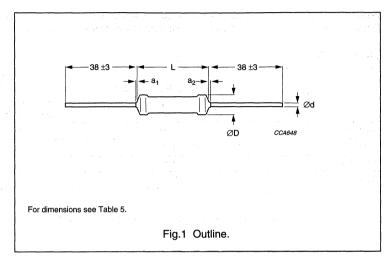



Table 5 Resistor type and relevant physical dimensions; see Fig.1

| TYPE      | ØD<br>MAX.<br>(mm) | L<br>MAX.<br>(mm) | a <sub>1</sub> , a <sub>2</sub><br>a <sub>1</sub> + a <sub>2</sub> | Ød<br>(mm) |
|-----------|--------------------|-------------------|--------------------------------------------------------------------|------------|
| MR24E/C/D | 2.4                | 6.5               | ≤1                                                                 | 0.58 ±0.05 |
| MR34E/C/D | 3.1                | 10.5              | ≤1                                                                 | 0.58 ±0.05 |

MR24/34, E/C/D

# **TESTS AND REQUIREMENTS**

All tests are carried out in accordance with the schedule of "MIL-R-10509F, paragraph 4.4.2".

In Table 6 the tests and requirements are listed with reference to the relevant clauses of "MIL-R-10509F".

Table 6 Test procedures and requirements

| MIL-R-10509F<br>CLAUSE | MIL-STD-202E<br>METHOD | TEST                            | MIL-R-10509F<br>PARAGRAPH | REQUIREMENTS(1)                                                                                        |
|------------------------|------------------------|---------------------------------|---------------------------|--------------------------------------------------------------------------------------------------------|
| 4.6.4                  | 102                    | temperature cycling             | 3.9                       | $\Delta R \le 0.25\% + 0.05 \Omega$                                                                    |
| 4.6.5                  | _                      | low-temperature operation       | 3.10                      | $\Delta R \le 0.25\% + 0.05 \Omega$                                                                    |
| 4.6.6                  | -                      | short-time overload             | 3.11                      | $\Delta R \le 0.25\% + 0.05 \Omega$                                                                    |
| 4.6.7                  | 211                    | terminal strength               | 3.12                      | $\Delta R \le 0.2\% + 0.05 \Omega$                                                                     |
| 4.6.8                  | 301/305                | dielectric withstanding voltage | 3.13                      | $\Delta R \le 0.25\% + 0.05 \Omega$                                                                    |
| 4.6.9                  | 302                    | insulation resistance           | 3.14                      | $R_{ins} \ge 10000 \text{ M}\Omega$                                                                    |
| 4.6.10                 | 210                    | resistance to soldering heat    | 3.15                      | $\Delta R \le 0.1\% + 0.05 \Omega$                                                                     |
| 4.6.11                 | 106                    | moisture resistance             | 3.16                      | $\begin{split} \Delta R &\leq 0.5\% + 0.05 \ \Omega \\ R_{\text{ins}} &\geq 100 \ M\Omega \end{split}$ |
| 4.6.13                 | 108                    | life                            | 3.18                      | $\Delta R \le 0.5\% + 0.05 \Omega$                                                                     |
| 4.6.15                 | 205                    | shock, medium impact            | 3.20                      | $\Delta R \le 0.25\% + 0.05 \Omega$                                                                    |
| 4.6.16                 | 204                    | vibration                       | 3.21                      | $\Delta R \le 0.25\% + 0.05 \Omega$                                                                    |

# Note

<sup>1.</sup> Although resistors with a temperature coefficient of 100 × 10<sup>-6</sup>/K correspond with characteristic D resistors of "MIL-R-10509F", they meet the more severe test requirement of characteristic C and E resistors.

# INDEX OF ORDERING CODE

andre de la companya Tanàna dia mandra dia

en de la companya de la co

# Leaded fixed linear resistors

# Index of ordering code

# 12-DIGIT ORDERING CODE

The resistors have a 12-digit ordering code starting with 2306 or 2322.

Subsequent digits indicate style, packaging, resistance value and tolerance.

Refer to individual data sheets for detailed composition of the ordering code.

In Table 1 the 12NC is referenced to the applicable page number where a detailed composition will be found.

Table 1 First 6 or 7 digits of the ordering code

| TYPE NAME                                            | ORDERING CODE | PAGE |
|------------------------------------------------------|---------------|------|
| 2306 (first 4 digits followed by next 2 or 3 digits) |               |      |
| PR01                                                 | 197           | 69   |
| PR02                                                 | 198           | 69   |
| PAC01/02/03/04/05/06                                 | 327           | 138  |
| AC01                                                 | 328           | 116  |
| AC03/04/057/10/15/20                                 | 329           | 116  |
| SMW/SMF02                                            | 340           | 151  |
| SMW/SMF03                                            | 341           | 151  |
| SMW/SMF05                                            | 342           | 151  |
| RMW15/20                                             | 254           | 157  |
| 2322 (first 4 digits followed by next 2 or 3 digits) |               |      |
| RMW03/05/07/10                                       | 25            | 157  |
| RMF03/05/07/10                                       | 25            | 157  |
| MPR24                                                | 141           | 62   |
| MPR34                                                | 142           | 62   |
| MPR24                                                | 143           | 62   |
| MPR34                                                | 144           | 62   |
| MR25                                                 | 151           | 165  |
| MR30                                                 | 152           | 165  |
| MRS25                                                | 156           | 40   |
| MRS16S                                               | 157           | 40   |

| TYPE NAME | ORDERING CODE | PAGE |
|-----------|---------------|------|
| MR24E     | 160           | 173  |
| MR24C     | 161           | 173  |
| MR24D     | 162           | 173  |
| MR34E     | 163           | 173  |
| MR34C     | 164           | 173  |
| MR34D     | 165           | 173  |
| SFR25     | 181           | 27   |
| SFR25H    | 186           | 27   |
| SFR16S    | 187           | 27   |
| PR01      | 193           | 69   |
| PR02      | 194           | 69   |
| PR03      | 195           | 69   |
| PR01      | 196           | 69   |
| PR02      | 197           | 69   |
| NFR25     | 204           | 51   |
| NFR25     | 205           | 51   |
| NFR25H    | 207           | 51   |
| VR25      | 241           | 92   |
| VR37      | 242           | 98   |
| VR68      | 244           | 104  |
| LSR37     | 245           | 109  |
| LVR05     | 288           | 144  |

1998 Aug 28 179

# **DATA HANDBOOK SYSTEM**

# Data handbook system

# **DATA HANDBOOK SYSTEM**

Philips Components data handbooks are available for selected product ranges and contain all relevant data available at the time of publication and each is revised and updated regularly.

Loose data sheets are sent to subscribers to keep them up-to-date on additions or alterations made during the lifetime of each edition.

Our data handbook titles are listed here.

# Display components

| Book | Title                                                 |
|------|-------------------------------------------------------|
| DC01 | Colour Television Tubes                               |
| DC02 | Monochrome Monitor Tubes and Deflection Units         |
| DC03 | Television Tuners, Coaxial Aerial Input<br>Assemblies |
| DC04 | Colour Monitor and Multimedia Tubes                   |
| DC05 | Wire Wound Components                                 |

# **Magnetic products** Title

Book

| MA01 | Soft Ferrites                                 |
|------|-----------------------------------------------|
| MA03 | Piezoelectric Ceramics and Specialty Ferrites |
| MA04 | Dry-reed Switches                             |

# Passive components Title

Book

|       | 1                                             |
|-------|-----------------------------------------------|
| PA01  | Electrolytic Capacitors                       |
| PA02  | Varistors, Thermistors and Sensors            |
| PA03  | Potentiometers                                |
| PA04  | Variable Capacitors                           |
| PA05  | Film Capacitors                               |
| PA06  | Ceramic Capacitors                            |
| PA06a | Surface Mounted Ceramic Multilayer Capacitors |
| PA06b | Leaded Ceramic Capacitors                     |
| PA08  | Fixed Resistors                               |
| PA10  | Quartz Crystals                               |
| PA11  | Quartz Oscillators                            |
|       |                                               |

# MORE INFORMATION FROM PHILIPS COMPONENTS?

For more information about Philips Components data handbooks, catalogues and subscriptions, please contact your nearest Philips Components sales organization (see address list on the back cover of this handbook).

1998 Sep 01 182

# Data handbook system

# **OVERVIEW OF PHILIPS SEMICONDUCTORS DATA HANDBOOKS**

Our sister product division, Philips Semiconductors, also has a comprehensive data handbook system to support their products. Their data handbook titles are listed here.

# Integrated circuits

| miegrai | eu circuits                                        |
|---------|----------------------------------------------------|
| Book    | Title                                              |
| IC01    | Semiconductors for Radio, Audio and                |
|         | CD/DVD Systems                                     |
| IC02    | Semiconductors for Television and Video<br>Systems |
| IC03    | Semiconductors for Wired Telecom Systems           |
| IC04    | HE4000B Logic Family CMOS                          |
| IC05    | Advanced Low-power Schottky (ALS) Logic            |
| IC06    | High-speed CMOS Logic Family                       |
| IC11    | General-purpose/Linear ICs                         |
| IC12    | I <sup>2</sup> C Peripherals                       |
| IC13    | Programmable Logic Devices (PLD)                   |
| IC14    | 8048-based 8-bit Microcontrollers                  |
| IC15    | FAST TTL Logic Series                              |
| IC16    | CMOS ICs for Clocks, Watches and                   |
|         | Real Time Clocks                                   |
| IC17    | Semiconductors for Wireless Communications         |
| IC18    | Semiconductors for In-Car Electronics              |
| IC19    | ICs for Data Communications                        |
| IC20    | 80C51-based 8-bit Microcontrollers                 |
| IC22    | Multimedia ICs                                     |
| IC23    | BiCMOS Bus Interface Logic                         |
| IC24    | Low Voltage CMOS & BiCMOS Logic                    |
| IC25    | 16-bit 80C51XA Microcontrollers                    |
|         | (eXtended Architecture)                            |
| IC26    | Integrated Circuit Packages                        |
| IC27    | Complex Programmable Logic Devices                 |
|         |                                                    |

### Discrete semiconductors

| Book | Title                                      |
|------|--------------------------------------------|
| SC01 | Small-signal and Medium-power Diodes       |
| SC02 | Power Diodes                               |
| SC03 | Power Thyristors and Triacs                |
| SC04 | Small-signal Transistors                   |
| SC05 | Video Transistors and Modules for Monitors |
| SC06 | High-voltage and Switching                 |
|      | NPN Power Transistors                      |
| SC07 | Small-signal Field-effect Transistors      |
| SC13 | PowerMOS Transistors                       |
| SC14 | RF Wideband Transistors                    |
| SC16 | Wideband Hybrid Amplifier Modules for CATV |
| SC17 | Semiconductor Sensors                      |
| SC18 | Discrete Semiconductor Packages            |
| SC19 | RF & Microwave Power Transistors,          |

# MORE INFORMATION FROM PHILIPS SEMICONDUCTORS?

For more information contact your nearest Philips Semiconductors national organization shown in the following list.

Argentina: see South America

Australia: NORTH RYDE, Tel. +61 2 9805 4455 Fax. +61 2 9805 4466

Austria: WIEN, Tel. +43 1 60 101, Fax. +43 1 60 101 1210 Belarus: MINSK, Tel. +375 172 200 733, Fax. +375 172 200 773

Belgium: see The Netherlands

Brazil: see South America

Bulgaria: SOFIA, Tel. +359 2 689 211, Fax. +359 2 689 102

Canada: SCARBOROUGH, Tel. +1 800 234 7381

Chile: see South America

China/Hong Kong: HONG KONG, Tel. +852 2319 7888, Fax. +852 2319 7700

Colombia: see South America Czech Republic: see Austria

Denmark: COPENHAGEN, Tel. +45 32 88 2636, Fax. +45 31 57 0044

Finland: ESPOO, Tel. +358 9 615800, Fax. +358 9 61580920 France: SURESNES, Tel. +33 1 40 99 6161, Fax. +33 1 40 99 6427

Germany: HAMBURG, Tel. +49 40 23 53 60, Fax. +49 40 23 536 300 Greece: TAVROS/ATHENS, Tel. +30 1 4894 339/239, Fax. +30 1 4814 240

Hungary: see Austria

India: BOMBAY, Tel. +91 22 4938 541, Fax. +91 22 4938 722

Indonesia: JAKARTA, Tel. +62 21 794 0040 ext. 2501, Fax. +62 21 794 0080

Ireland: DUBLIN, Tel. +353 1 7640 000, Fax. +353 1 7640 200 Israel: TEL AVIV, Tel. +972 3 645 0444, Fax. +972 3 649 1007 Italy: MILANO, Tel. +39 2 6752 2531, Fax. +39 2 6752 2557 Japan: TOKIO, Tel. +81 3 3740 5130, Fax. +81 3 3740 5077

Korea: SEOUL, Tel. +82 2 709 1412, Fax. +82 2 709 1415 Malaysia: SELANGOR, Tel. +60 3 750 5214, Fax. +60 3 757 4880

Mexico: EL PASO, TEXAS, Tel. +9-5 800 234 7381

Middle East: see Italy

Netherlands: EINDHOVEN, Tel. +31 40 27 82785, Fax. +31 40 27 88399 New Zealand: AUCKLAND, Tel. +64 9 849 4160, Fax. +64 9 849 7811

Norway: OSLO, Tel. +47 22 74 8000, Fax. +47 22 74 8341

Pakistan: see Singapore

Philippines: MANILA, Tel. +63 2 816 6380, Fax. +63 2 817 3474 Poland: WARSZAWA, Tel. +48 22 612 2831, Fax. +48 22 612 2327

Portugal: see Spain Romania: see Italy

Russia: MOSCOW, Tel. +7 095 755 6918, Fax. +7 095 755 6919 Singapore: SINGAPORE, Tel. +65 350 2538, Fax. +65 251 6500

Slovakia: see Austria Slovenia: see Italy

South Africa: JOHANNESBURG, Tel. +27 11 470 5911, Fax. +27 11 470 5494 South America: SÃO PAULO, Tel. +55 11 821 2333, Fax. +55 11 821 2382

Spain: BARCELONA, Tel. +34 93 301 6312, Fax. +34 93 301 4107 Sweden: STOCKHOLM, Tel. +46 8 5985 2000, Fax. +46 8 5985 2745 Switzerland: ZÜRICH, Tel. +41 1 488 2741, Fax. +41 1 488 3263 Taiwan: TAIPEI, Tel. +886 2 2134 2865, Fax. +886 2 2134 2874 Thailand: BANGKOK, Tel. +66 2 745 4090, Fax. +66 2 398 0793

Turkey: ISTANBUL, Tel. +90 212 279 2770, Fax. +90 212 282 6707 Ukraine: KIEV, Tel. +380 44 264 2776, Fax. +380 44 268 0461

United Kingdom: HAYES, Tel. +44 181 730 5000, Fax. +44 181 754 8421

United States: SUNNYVALE, Tel. +1 800 234 7381

Uruquay: see South America Vietnam: see Singapore

Yugoslavia: BEOGRAD, Tel. +381 11 625 344, Fax. +381 11 635 777

Internet: http://www.semiconductors.philips.com

For all other countries apply to:

Philips Semiconductors

International Marketing & Sales Communications, Building BE-p, P.O. Box 218, 5600 MD EINDHOVEN, The Netherlands,

Fax. +31-40-2724825

183 1998 Sep 01

RF Power Modules and Circulators/Isolators

# NOTES

# STANDARD SERIES OF VALUES IN A DECADE FOR RESISTANCES AND CAPACITANCES

According to "IEC publication 63".

| E192 | E96 | E48 |
|------|-----|-----|------|-----|-----|------|-----|-----|------|-----|-----|
| 100  | 100 | 100 | 178  | 178 | 178 | 316  | 316 | 316 | 562  | 562 | 562 |
| 101  |     |     | 180  |     |     | 320  |     |     | 569  |     |     |
| 102  | 102 |     | 182  | 182 |     | 324  | 324 |     | 576  | 576 |     |
| 104  |     |     | 184  |     |     | 328  |     |     | 583  |     |     |
| 105  | 105 | 105 | 187  | 187 | 187 | 332  | 332 | 332 | 590  | 590 | 590 |
| 106  |     |     | 189  |     |     | 336  |     |     | 597  |     |     |
| 107  | 107 |     | 191  | 191 |     | 340  | 340 |     | 604  | 604 |     |
| 109  |     |     | 193  |     |     | 344  |     |     | 612  |     |     |
| 110  | 110 | 110 | 196  | 196 | 196 | 348  | 348 | 348 | 619  | 619 | 619 |
| 111  |     |     | 198  |     |     | .352 |     |     | 626  |     |     |
| 113  | 113 |     | 200  | 200 |     | 357  | 357 |     | 634  | 634 |     |
| 114  |     |     | 203  |     |     | 361  |     |     | 642  |     |     |
| 115  | 115 | 115 | 205  | 205 | 205 | 365  | 365 | 365 | 649  | 649 | 649 |
| 117  |     |     | 208  |     |     | 370  |     |     | 657  |     |     |
| 118  | 118 |     | 210  | 210 |     | 374  | 374 |     | 665  | 665 |     |
| 120  |     |     | 213  |     |     | 379  |     |     | 673  |     |     |
| 121  | 121 | 121 | 215  | 215 | 215 | 383  | 383 | 383 | 681  | 681 | 681 |
| 123  |     |     | 218  |     |     | 388  |     |     | 690  |     |     |
| 124  | 124 |     | 221  | 221 |     | 392  | 392 |     | 698  | 698 |     |
| 126  |     |     | 223  |     |     | 397  |     |     | 706  |     |     |
| 127  | 127 | 127 | 226  | 226 | 226 | 402  | 402 | 402 | 715  | 715 | 715 |
| 129  |     |     | 229  |     |     | 407  |     |     | 723  |     |     |
| 130  | 130 |     | 232  | 232 |     | 412  | 412 |     | 732  | 732 |     |
| 132  |     |     | 234  |     |     | 417  |     |     | 741  |     |     |
| 133  | 133 | 133 | 237  | 237 | 237 | 422  | 422 | 422 | 750  | 750 | 750 |
| 135  |     |     | 240  |     |     | 427  |     |     | 759  |     |     |
| 137  | 137 |     | 243  | 243 |     | 432  | 432 |     | 768  | 768 |     |
| 138  |     |     | 246  |     |     | 437  |     |     | 777  |     |     |
| 140  | 140 | 140 | 249  | 249 | 249 | 442  | 442 | 442 | 787  | 787 | 787 |
| 142  |     |     | 252  |     |     | 448  |     |     | 796  |     |     |
| 143  | 143 |     | 255  | 255 |     | 453  | 453 |     | 806  | 806 |     |
| 145  |     |     | 258  |     |     | 459  |     |     | 816  |     |     |
| 147  | 147 | 147 | 261  | 261 | 261 | 464  | 464 | 464 | 825  | 825 | 825 |
| 149  |     |     | 264  |     |     | 470  |     |     | 835  |     |     |
| 150  | 150 |     | 267  | 267 |     | 475  | 475 |     | 845  | 845 |     |
| 152  |     |     | 271  |     |     | 481  |     |     | 856  |     |     |
| 154  | 154 | 154 | 274  | 274 | 274 | 487  | 487 | 487 | 866  | 866 | 866 |
| 156  |     |     | 277  |     |     | 493  |     |     | 876  |     |     |
| 158  | 158 |     | 280  | 280 |     | 499  | 499 |     | 887  | 887 |     |
| 160  |     |     | 284  |     |     | 505  |     |     | 898  |     |     |
| 162  | 162 | 162 | 287  | 287 | 287 | 511  | 511 | 511 | 909  | 909 | 909 |
| 164  |     |     | 291  |     |     | 517  |     |     | 920  |     |     |
| 165  | 165 |     | 294  | 294 |     | 523  | 523 |     | 931  | 931 |     |
| 167  |     |     | 298  |     |     | 530  |     |     | 942  |     |     |
| 169  | 169 | 169 | 301  | 301 | 301 | 536  | 536 | 536 | 953  | 953 | 953 |
| 172  |     |     | 305  |     |     | 542  |     |     | 965  |     |     |
| 174  | 174 |     | 309  | 309 |     | 549  | 549 |     | 976  | 976 |     |
| 176  |     |     | 312  |     |     | 556  |     |     | 988  |     |     |

| E24 | E12 | E6 | E3 |
|-----|-----|----|----|
| 10  | 10  | 10 | 10 |
| 11  |     |    |    |
| 12  | 12  |    |    |
| 13  |     |    |    |
| 15  | 15  | 15 |    |
| 16  |     |    |    |
| 18  | 18  |    |    |
| 20  |     |    |    |
| 22  | 22  | 22 | 22 |
| 24  |     |    |    |
| 27  | 27  |    |    |
| 30  |     |    |    |
| 33  | 33  | 33 |    |
| 36  |     |    |    |
| 39  | 39  |    |    |
| 43  |     |    |    |
| 47  | 47  | 47 | 47 |
| 51  |     |    |    |
| 56  | 56  |    |    |
| 62  |     |    |    |
| 68  | 68  | 68 |    |
| 75  |     |    |    |
| 82  | 82  |    |    |
| 91  |     |    |    |

# Philips Components – a worldwide company

Australia: Philips Components Pty Ltd., NORTH RYDE, Tel. +61 2 9805 4455, Fax. +61 2 9805 4466

Austria: Österreichische Philips Industrie GmbH, WIEN. Tel. +43 1 60 101 12 41, Fax. +43 1 60 101 12 11

Belarus: Philips Office Belarus, MINSK, Tel. +375 172 200 924/733, Fax. +375 172 200 773

Benelux: Philips Nederland B.V., EINDHOVEN, NL. Tel. +31 40 2783 749, Fax. +31 40 2788 399

Brazil: Philips Components, SÃO PAULO. Tel. +55 11 821 2333, Fax. +55 11 829 1849 Canada: Philips Electronics Ltd., SCARBOROUGH, Tel. +1 416 292 5161, Fax. +1 416 754 6248

China: Philips Company, SHANGHAI, Tel. +86 21 6354 1088, Fax. +86 21 6354 1060

Denmark: Philips Components A/S, COPENHAGEN S, Tel. +45 32 883 333, Fax. +45 31 571 949

Finland: Philips Components, ESPOO, Tel. +358 9 615 800, Fax. +358 9 615 80510 France: Philips Composants, SURESNES. Tel. +33 1 4099 6161, Fax. +33 1 4099 6493

Germany: Philips Components GmbH, HAMBURG, Tel. +49 40 2489-0, Fax. +49 40 2489 1400

Greece: Philips Hellas S.A., TAVROS, Tel. +30 1 4894 339/+30 1 4894 239, Fax. +30 1 4814 240

Hong Kong: Philips Hong Kong, KOWLOON. Tel. +852 2784 3000, Fax. +852 2784 3003

India: Philips India Ltd., MUMBAI, Tel. +91 22 4930 311, Fax. +91 22 4930 966/4950 304

Indonesia: P.T. Philips Development Corp., JAKARTA, Tel. +62 21 794 0040, Fax. +62 21 794 0080

Ireland: Philips Electronics (Ireland) Ltd., DUBLIN, Tel. +353 1 7640 203, Fax. +353 1 7640 210

Israel: Rapac Electronics Ltd., TEL AVIV, Tel. +972 3 6450 444, Fax. +972 3 6491 007

Italy: Philips Components S.r.I., MILANO. Tel. +39 2 6752 2531, Fax. +39 2 6752 2557

Japan: Philips Japan Ltd., TOKYO,

Tel. +81 3 3740 5135, Fax. +81 3 3740 5035 Korea (Republic of): Philips Electronics (Korea) Ltd., SEOUL,

Tel. +82 2 709 1472, Fax. +82 2 709 1480

Philippines: Philips Semiconductors Philippines Inc. METRO MANILA, Tel. +63 2 816 6345, Fax. +63 2 817 3474

Poland: Philips Poland Sp. z.o.o., WARSZAWA, Tel. +48 22 612 2594, Fax. +48 22 612 2327

Portugal: Philips Portuguesa S.A.. Philips Components: LINDA-A-VELHA, Tel. +351 1 416 3160/416 3333, Fax. +351 1 416 3174/416 3366

Russia: Philips Russia, MOSCOW, Tel. +7 95 755 6918, Fax. +7 95 755 6919

Singapore: Philips Singapore Pte Ltd., SINGAPORE, Tel. +65 350 2000, Fax. +65 355 1758

South Africa: S.A. Philips Pty Ltd., JOHANNESBURG. Tel. +27 11 470 5911, Fax. +27 11 470 5494

Spain: Philips Components, BARCELONA, Tel. +34 93 301 63 12, Fax. +34 93 301 42 43

Sweden: Philips Components AB, STOCKHOLM. Tel. +46 8 5985 2000, Fax. +46 8 5985 2745

Switzerland: Philips Components AG, ZÜRICH. Tel. +41 1 488 22 11, Fax. +41 1 481 7730

Taiwan: Philips Taiwan Ltd., TAIPEI, Tel. +886 2 2134 2900, Fax. +886 2 2134 2929

Thailand: Philips Electronics (Thailand) Ltd., BANGKOK, Tel. +66 2 745 4090, Fax. +66 2 398 0793

Turkey: Türk Philips Ticaret A.S., GÜLTEPE/ISTANBUL, Tel. +90 212 279 2770, Fax. +90 212 282 6707

United Kingdom: Philips Components Ltd., DORKING. Tel. +44 1306 512 000, Fax. +44 1306 512 345

- · Display Components, ANN ARBOR, MI. Tel. +1 734 996 9400, Fax. +1 734 761 2776
- · Magnetic Products, SAUGERTIES, NY, Tel. +1 914 246 2811, Fax. +1 914 246 0487
- · Passive Components, SAN JOSE, CA, Tel. +1 408 570 5600, Fax. +1 408 570 5700

Yugoslavia (Federal Republic of): Philips Components, BELGRADE. Tel. +381 11 625 344/373, Fax. +381 11 635 777

- Display Components: www.dc.comp.philips.com
- Passive Components: www.passives.comp.philips.com

For all other countries apply to: Philips Components, Building BF-1, P.O. Box 218, 5600 MD EINDHOVEN,

The Netherlands, Fax. +31-40-27 23 903.

COD19 © Philips Electronics N.V. 1998

All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent- or other industrial or intellectual property rights.

# Printed in The Netherlands

533410/10000/01/pp192 Document order number

Date of release: September 1998 9398 184 20011

